Align Ribose import ATP-binding protein RbsA; EC 7.5.2.7 (characterized, see rationale)
to candidate HSERO_RS11485 HSERO_RS11485 ribose ABC transporter ATPase
Query= uniprot:D8J111 (520 letters) >FitnessBrowser__HerbieS:HSERO_RS11485 Length = 522 Score = 396 bits (1018), Expect = e-115 Identities = 227/504 (45%), Positives = 317/504 (62%), Gaps = 15/504 (2%) Query: 15 SSSSSVPVIALRNVCKRFPGVLALDNCQFELAAGEVHALMGENGAGKSTLMKILSGVYQR 74 S S P++ L + KR+ + LD +L G+V AL GENGAGKSTL KI+ G+ Sbjct: 6 SLSQGSPLLTLSGIGKRYAAPV-LDGIDLDLRPGQVLALTGENGAGKSTLSKIICGLVDA 64 Query: 75 DSGDILLDGKPVEITEPRQAQALGIGIIHQELNLMNHLSAAQNIFIGREPRKAMGLFIDE 134 +G ++LDG+P QA+ LGI ++ QELNL+ LS A+N+F+ + PR+ +ID Sbjct: 65 SAGGMMLDGQPYAPASRTQAEGLGIRMVMQELNLIPTLSIAENLFLEKLPRRFG--WIDR 122 Query: 135 DELNRQAAAIFARMRL-DMDPSTPVGELTVARQQMVEIAKALSFDSRVLIMDEPTAALNN 193 +L A A + L ++DP TPVG+L + QQMVEIA+ L R LI+DEPTA L N Sbjct: 123 KKLAEAARAQMEVVGLGELDPWTPVGDLGLGHQQMVEIARNLIGSCRCLILDEPTAMLTN 182 Query: 194 AEIAELFRIIRDLQAQGVGIVYISHKMDELRQIADRVSVMRDGKYIATVPMQETSMDTII 253 E+ LF I L+A+GV I+YISH+++EL++IADR+ V+RDGK + + S + ++ Sbjct: 183 REVELLFSRIERLRAEGVAIIYISHRLEELKRIADRIVVLRDGKLVCNDDIGRYSTEQLV 242 Query: 254 SMMVGRA----LDGEQRIPPDTSRNDVVLEVRGLNRGRAIRDVSFTLRKGEILGFAGLMG 309 +M G LD E R VL +RGL R + S L GE+LG AGL+G Sbjct: 243 QLMAGELTKVDLDAEHR-----RIGAPVLRIRGLGRAPVVHPASLALHAGEVLGIAGLIG 297 Query: 310 AGRTEVARAIFGADPLEAGEIIIHGGK--AVIKSPADAVAHGIGYLSEDRKHFGLAVGMD 367 +GRTE+ R IFGAD E GEI I + A I+SP DAV GI ++EDRK GL + Sbjct: 298 SGRTELLRLIFGADRAEQGEIFIGDSQEPARIRSPKDAVKAGIAMVTEDRKGQGLLLPQA 357 Query: 368 VQANIALSSMGRFTRVGFMDQRAIREAAQMYVRQLAIKTPSVEQQARLLSGGNQQKIVIA 427 + N +L+++G +R G +D A AQ YV++L I++ SV Q A LSGGNQQK+VIA Sbjct: 358 ISVNTSLANLGSVSRGGMLDHAAESSVAQDYVKKLRIRSGSVAQAAGELSGGNQQKVVIA 417 Query: 428 KWLLRDCDILFFDEPTRGIDVGAKSEIYKLLDALAEQGKAIVMISSELPEVLRMSHRVLV 487 +WL RDC I+ FDEPTRGID+GAKS+IY+L LA QGK ++++SS+L E++++ R+ V Sbjct: 418 RWLYRDCPIMLFDEPTRGIDIGAKSDIYRLFAELAAQGKGLLVVSSDLRELMQICDRIAV 477 Query: 488 MCEGRITGELARADATQEKIMQLA 511 M GRI +R D +QE+I+ A Sbjct: 478 MSAGRIADTFSRDDWSQERILAAA 501 Lambda K H 0.320 0.135 0.372 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 636 Number of extensions: 24 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 522 Length adjustment: 35 Effective length of query: 485 Effective length of database: 487 Effective search space: 236195 Effective search space used: 236195 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory