Align L-arabinonate dehydratase; ArDHT; D-fuconate dehydratase; Galactonate dehydratase; L-arabonate dehydratase; EC 4.2.1.25; EC 4.2.1.67; EC 4.2.1.6 (characterized)
to candidate HSERO_RS16705 HSERO_RS16705 dihydroxy-acid dehydratase
Query= SwissProt::B5ZZ34 (579 letters) >lcl|FitnessBrowser__HerbieS:HSERO_RS16705 HSERO_RS16705 dihydroxy-acid dehydratase Length = 578 Score = 754 bits (1946), Expect = 0.0 Identities = 369/571 (64%), Positives = 453/571 (79%), Gaps = 6/571 (1%) Query: 12 RSQEWYGGTSRDVIYHRGWLKNQGYPHDLFDGRPVIGILNTWSDMTPCNGHLRELAEKVK 71 RSQ W+G RD +R W+KN+G PHD FDGRPVIGI NT+S++TPCN H R LAE+VK Sbjct: 11 RSQAWFGRQDRDGFIYRSWVKNRGIPHDQFDGRPVIGICNTYSELTPCNSHFRALAEQVK 70 Query: 72 AGVWEAGGFPLEVPVFSASENTFRPTAMMYRNLAALAVEEAIRGQPMDGCVLLVGCDKTT 131 G+WEAGGFPLE PV S E RPTAM+YRNLA++ VEE+IR P+DG VLL+GCDKTT Sbjct: 71 IGIWEAGGFPLEFPVMSLGETLLRPTAMLYRNLASMDVEESIRANPLDGVVLLMGCDKTT 130 Query: 132 PSLLMGAASCDLPSIVVTGGPMLNGYFRGERVGSGTHLWKFSEMVKAGEMTQAEFLEAEA 191 P+LLMGAAS D+P+I V+GGPML+G +RG +GSGT +W+ SE V+AG+MTQ EF EAE+ Sbjct: 131 PALLMGAASVDVPTIGVSGGPMLSGKYRGRELGSGTGVWQMSEDVRAGKMTQEEFFEAES 190 Query: 192 SMSRSSGTCNTMGTASTMASMAEALGMALSGNAAIPGVDSRRKVMAQLTGRRIVQMVKDD 251 M RS G C TMGTASTMASM EALG+ L NAAIP VD+RR V+A+ GRRIVQMV++D Sbjct: 191 CMHRSHGHCMTMGTASTMASMVEALGVGLPHNAAIPAVDARRNVLARNAGRRIVQMVEED 250 Query: 252 LKPSEIMTKQAFENAIRTNAAIGGSTNAVIHLLAIAGRVGIDLSLDDWDRCGRDVPTIVN 311 L S+I+T+QAFENAIR NAAIGGSTNAVIHLLAIAGR+GI L L DWD G+ +P +++ Sbjct: 251 LVLSKILTRQAFENAIRVNAAIGGSTNAVIHLLAIAGRIGIKLDLKDWDDIGQQLPCLLD 310 Query: 312 LMPSGKYLMEEFFYAGGLPVVLKRLGEAGLLHKDALTVSGETVWDEVKDVVNWNEDVILP 371 L PSGK+LME+F+YAGGLP V+++L ++ K ALT +G+T+W+ +D NWNE+VI Sbjct: 311 LQPSGKFLMEDFYYAGGLPAVIRQL--ESVIDKTALTANGKTLWENCQDAPNWNEEVIRS 368 Query: 372 AEKALTSSGGIVVLRGNLAPKGAVLKPSAASPHLLVHKGRAVVFEDIDDYKAKINDDNLD 431 +K + GI +L+GNLAP GAV+KPSAA+P LL H+GRAVVFE+ DD +I+D+NLD Sbjct: 369 FDKPFKEAAGIAILKGNLAPDGAVIKPSAATPALLKHRGRAVVFENSDDLHKRIDDENLD 428 Query: 432 IDENCIMVMKNCGPKGYPGMAEVGNMGLPPKVLKKGILDMVRISDARMSGTAYGTVVLHT 491 +DE C++V+KNCGPKGYPGMAE GNM LPPK+L+KGI DMVR+SDARMSGTAYGTVVLH Sbjct: 429 VDETCVLVLKNCGPKGYPGMAEAGNMPLPPKILRKGITDMVRVSDARMSGTAYGTVVLHV 488 Query: 492 SPEAAVGGPLAVVKNGDMIELDVPNRRLHLDISDEELARRLAEWQPNHDLPTS---GYAF 548 SPEAA GGPLAVV+NGD IELDV R+LHLD+SDEELARR A+WQ +LP G+ Sbjct: 489 SPEAAAGGPLAVVQNGDFIELDVEARKLHLDVSDEELARRRAQWQ-KPELPPQMQRGWVK 547 Query: 549 LHQQHVEGADTGADLDFLKGCRGNAVGKDSH 579 L+ HV+ A+ GADLDFL G G V KD+H Sbjct: 548 LYVDHVQQANQGADLDFLVGKSGPYVPKDNH 578 Lambda K H 0.318 0.135 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1131 Number of extensions: 54 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 579 Length of database: 578 Length adjustment: 36 Effective length of query: 543 Effective length of database: 542 Effective search space: 294306 Effective search space used: 294306 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory