Align Galactose/methyl galactoside import ATP-binding protein MglA; EC 7.5.2.11 (characterized)
to candidate HSERO_RS05195 HSERO_RS05195 xylose ABC transporter ATP-binding protein
Query= SwissProt::P23924 (506 letters) >lcl|FitnessBrowser__HerbieS:HSERO_RS05195 HSERO_RS05195 xylose ABC transporter ATP-binding protein Length = 518 Score = 394 bits (1012), Expect = e-114 Identities = 220/499 (44%), Positives = 320/499 (64%), Gaps = 12/499 (2%) Query: 13 LLEMRGINKSFPGVKALDNVNLNVRPHSIHALMGENGAGKSTLLKCLFGIYQKDS--GSI 70 +LEMRGI KSFPGVKAL+NVNL VR IHA++GENGAGKSTL+K L G+Y S G I Sbjct: 4 ILEMRGIEKSFPGVKALNNVNLAVREGEIHAIVGENGAGKSTLMKVLSGVYPHGSYSGDI 63 Query: 71 VFQGKEVDFHSAKEALENGISMVHQELNLVLQRSVMDNMWLGRYPTKGMFVDQDKMYQDT 130 V++G+ F +++ GI ++HQEL LV SVM+N++LG +G +D ++ Y Sbjct: 64 VYKGEVRAFKDIRDSEHLGIIIIHQELALVPLLSVMENLFLGNEQARGGVIDWEQSYVRA 123 Query: 131 KAIFDELDIDIDPRARVGTLSVSQMQMIEIAKAFSYNAKIVIMDEPTSSLTEKEVNHLFT 190 K + ++ + P +VG L V + Q+IEIAKA S K++I+DEPT+SL E + + L Sbjct: 124 KELLAKVGLKESPLTQVGDLGVGKQQLIEIAKALSKEVKLLILDEPTASLNESDSDALLE 183 Query: 191 IIRKLKERGCGIVYISHKMEEIFQLCDEITILRDGQWIATQPL--EGLDMDKIIAMMVGR 248 ++ +LK +G + ISHK+ EI ++ D IT+LRDG + T E + D+II MVGR Sbjct: 184 LLLELKRQGIASILISHKLNEISKVADSITVLRDGTTVDTFDCRAEPISEDRIIQHMVGR 243 Query: 249 SLNQRFPDKENKPGDVILEVR-----HLTSLRQPSIRDVSFDLHKGEILGIAGLVGAKRT 303 + R+P ++ + G+VI EVR H + +I+DV+ + GEI+GIAGL+GA RT Sbjct: 244 EMADRYPQRDPQIGEVIFEVRDWRVHHPLHTDRLAIKDVNMSVRAGEIVGIAGLMGAGRT 303 Query: 304 DIVETLFG--IREKSSGTITLHGKKINNHTANEAINHGFALVTEERRSTGIYAYLDIGFN 361 ++ +++FG +K +G LHGK+++ T +AI G A VTE+R+ G+ DI N Sbjct: 304 ELAKSIFGRAYGKKITGQAFLHGKEVDLSTIEKAIAKGIAYVTEDRKGDGLVLEEDIKKN 363 Query: 362 SLISNIRNYKNKVGLLDNSRMKSDTQWVIDSMRVKTPGHRTQIGSLSGGNQQKVIIGRWL 421 ++N+ + ++D +R MR++ ++ +LSGGNQQKV++ +WL Sbjct: 364 ISLANLGGVSERT-VIDEAREYKIAADFKQQMRIRCSSVLQKVVNLSGGNQQKVVLSKWL 422 Query: 422 LTQPEILMLDEPTRGIDVGAKFEIYQLIAELAKKGKGIIIISSEMPELLGITDRILVMSN 481 +QPE+L+LDEPTRGIDVGAKFEIY +I++LA +GK II+ISSEMPELLG+ DRI VM+ Sbjct: 423 FSQPEVLILDEPTRGIDVGAKFEIYNIISKLAAEGKCIIMISSEMPELLGMCDRIYVMNE 482 Query: 482 GLVSGIVDTKTTTQNEILR 500 G G + TQ I+R Sbjct: 483 GQFVGHLPKAEATQENIMR 501 Lambda K H 0.319 0.137 0.388 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 661 Number of extensions: 27 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 506 Length of database: 518 Length adjustment: 35 Effective length of query: 471 Effective length of database: 483 Effective search space: 227493 Effective search space used: 227493 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory