Align galactofuranose ABC transporter putative ATP binding subunit (EC 7.5.2.9) (characterized)
to candidate HSERO_RS03640 HSERO_RS03640 D-ribose transporter ATP-binding protein
Query= ecocyc::YTFR-MONOMER (500 letters) >FitnessBrowser__HerbieS:HSERO_RS03640 Length = 502 Score = 355 bits (911), Expect = e-102 Identities = 192/489 (39%), Positives = 301/489 (61%), Gaps = 2/489 (0%) Query: 9 ILRTEGLSKFFPGVKALDNVDFSLRRGEIMALLGENGAGKSTLIKALTGVYHADRGTIWL 68 +L+ G+ K F AL ++ ++R GEI AL+GENGAGKSTL+K L+GV+ D+G I L Sbjct: 10 LLQMRGIRKSFGATLALSDMHLTIRPGEIHALMGENGAGKSTLMKVLSGVHAPDQGEILL 69 Query: 69 EGQAISPKNTAHAQQLGIGTVYQEVNLLPNMSVADNLFIGREPK-RFGLLRRKEMEKRAT 127 +G+ ++ ++ ++ GI +YQE+ + PN+SVA N+F+G E + R GL+ M R Sbjct: 70 DGRPVALRDPGASRAAGINLIYQELAVAPNISVAANVFMGSELRTRLGLIDHAAMRSRTD 129 Query: 128 ELMASYGFSLDVREPLNRFSVAMQQIVAICRAIDLSAKVLILDEPTASLDTQEVELLFDL 187 ++ G + R S+A QQ V I RA+ ++++I+DEPTA+L +E E LF++ Sbjct: 130 AVLRQLGAGFGASDLAGRLSIAEQQQVEIARALVHRSRIVIMDEPTAALSERETEQLFNV 189 Query: 188 MRQLRDRGVSLIFVTHFLDQVYQVSDRITVLRNGSFVGCRETCELPQIELVKMMLGREL- 246 +R+LRD G+++I+++H + +VY ++DR+TVLR+GSFVG E+ +V+MM+GR L Sbjct: 190 VRRLRDEGLAIIYISHRMAEVYALADRVTVLRDGSFVGELVRDEIDSERIVQMMVGRSLS 249 Query: 247 DTHALQRAGRTLLSDKPVAAFKNYGKKGTIAPFDLEVRPGEIVGLAGLLGSGRTETAEVI 306 + + QR + P G I P +VR GE++G AGL+G+GRTE A ++ Sbjct: 250 EFYQHQRIAPADAAQLPTVMQVRALAGGKIRPASFDVRAGEVLGFAGLVGAGRTELARLL 309 Query: 307 FGIKPADSGTALIKGKPQNLRSPHQASVLGIGFCPEDRKTDGIIAAASVRENIILALQAQ 366 FG P G L++G+P ++ P A GI + PEDRK G+ +V N + + ++ Sbjct: 310 FGADPRSGGDILLEGRPVHIDQPRAAMRAGIAYVPEDRKGQGLFLQMAVAANATMNVASR 369 Query: 367 RGWLRPISRKEQQEIAERFIRQLGIRTPSTEQPIEFLSGGNQQKVLLSRWLLTRPQFLIL 426 L + + +A I++L ++ E P+ LSGGNQQKVLL+RWL P+ LIL Sbjct: 370 HTRLGLVRSRSLGGVARAAIQRLNVKVAHPETPVGKLSGGNQQKVLLARWLEIAPKVLIL 429 Query: 427 DEPTRGIDVGAHAEIIRLIETLCADGLALLVISSELEELVGYADRVIIMRDRKQVAEIPL 486 DEPTRG+D+ A +EI +L+ L + G+A++VISSEL E++G DRV++MR+ E+ Sbjct: 430 DEPTRGVDIYAKSEIYQLVHRLASQGVAVVVISSELPEVIGICDRVLVMREGMITGELAG 489 Query: 487 AELSVPAIM 495 A ++ IM Sbjct: 490 AAITQENIM 498 Lambda K H 0.321 0.138 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 608 Number of extensions: 32 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 500 Length of database: 502 Length adjustment: 34 Effective length of query: 466 Effective length of database: 468 Effective search space: 218088 Effective search space used: 218088 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory