Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate HSERO_RS05645 HSERO_RS05645 succinate-semialdehyde dehdyrogenase
Query= SwissProt::Q1JUP4 (481 letters) >FitnessBrowser__HerbieS:HSERO_RS05645 Length = 493 Score = 355 bits (912), Expect = e-102 Identities = 195/472 (41%), Positives = 269/472 (56%), Gaps = 7/472 (1%) Query: 12 LIDGEWVDAASGKTIDVVNPATGKPIGRVAHAGIADLDRALAAAQSGFEAWRKVPAHERA 71 LI +W AA G+ +DV +PATG+ V G AD A+ AA + F AWR PA +RA Sbjct: 17 LIGADWRGAADGRQLDVSDPATGQVFASVPDGGAADARAAVEAAVAAFAAWRATPAKQRA 76 Query: 72 ATMRKAAALVRERADAIAQLMTQEQGKPLTEARVEVLSAADIIEWFADEGRRVYGRIVPP 131 +++ L+ D + +L+++EQGKPL EA+ EV AA +EWF +E R G I+P Sbjct: 77 GIIKRWNDLLLAHQDDLGRLISREQGKPLAEAKGEVAYAASYVEWFGEEATRANGDIIPA 136 Query: 132 RNLGAQQTVVKEPVGPVAAFTPWNFPVNQVVRKLSAALATGCSFLVKAPEETPASPAALL 191 G + +KEPVG VAA TPWNFP + RK++ ALA GC+ + K E+TP + AL+ Sbjct: 137 PVTGRRMMALKEPVGVVAAITPWNFPAAMIARKIAPALAAGCTVVCKPAEDTPLTSLALV 196 Query: 192 RAFVDAGVPAGVIGLVYGD---PAEISSYLIPHPVIRKVTFTGSTPVGKQLASLAGLHMK 248 R +AGVP GVI +V E+ + +RK++FTGST VGK LA + +K Sbjct: 197 RLAQEAGVPVGVINIVTASRERTPEVVDVWLADGRVRKISFTGSTAVGKHLARHSADTLK 256 Query: 249 RATMELGGHAPVIVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLVHNSIRDEFTRALV 308 + ++ELGG+AP IV +DADV A+ AKFRN GQ C+SP R V + D F L Sbjct: 257 KLSLELGGNAPFIVFDDADVDAAIDGVMAAKFRNGGQTCVSPNRIYVQEKVYDAFVDKLG 316 Query: 309 KHAEGLKVGNGLEEGTTLGALANPRRLTAMASVIDNARKVGASIETGGERIGSEG----N 364 LKVG + + +G + N R + + + +A GA + TGG+R+ G N Sbjct: 317 ARVAALKVGPATDPASQIGPMINARAIAKIDQHVRDAIARGARVITGGKRLQGPGFGSDN 376 Query: 365 FFAPTVIANVPLDADVFNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGYAFTRSFANV 424 ++APTV+A+V E FGPVA I F +E IA AN PFGLA Y ++ + Sbjct: 377 YYAPTVLADVTGAMQCSCEETFGPVAPITRFATEDEVIAAANATPFGLAAYFYSTDVRRI 436 Query: 425 HLLTQRLEVGMLWINQPATPWPEMPFGGVKDSGYGSEGGPEALEPYLVTKSV 476 H +T LE G++ +N+ A PFGGVK+SGYG EG L+ YL TK V Sbjct: 437 HRVTDALESGIVGVNEGALAAEAAPFGGVKESGYGREGSVHGLDDYLHTKYV 488 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 705 Number of extensions: 32 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 493 Length adjustment: 34 Effective length of query: 447 Effective length of database: 459 Effective search space: 205173 Effective search space used: 205173 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory