GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gdhA in Herbaspirillum seropedicae SmR1

Align glutamate dehydrogenase (EC 1.4.1.2) (characterized)
to candidate HSERO_RS19260 HSERO_RS19260 glutamate dehydrogenase

Query= BRENDA::P27346
         (421 letters)



>FitnessBrowser__HerbieS:HSERO_RS19260
          Length = 430

 Score =  389 bits (999), Expect = e-113
 Identities = 191/408 (46%), Positives = 273/408 (66%), Gaps = 6/408 (1%)

Query: 15  QVKNACDKLGMEPAVYELLKEPMRVIEVSIPVKMDDGSIKTFKGFRSQHNDAVGPTKGGI 74
           Q+      LG      E LK P R++ V +P++ DDG+I  F+G+R QHN + GP KGG+
Sbjct: 27  QIDRVTPYLGSLARWVETLKRPKRMLVVDVPIERDDGTIAHFEGYRVQHNTSRGPGKGGV 86

Query: 75  RFHQNVSRDEVKALSIWMTFKCSVTGIPYGGGKGGIIVDPSTLSQGELERLSRGYIDGIY 134
           RFHQ+V+  EV ALS WMT K +   +PYGG KGGI VDP TLS+GEL+R++R Y   I 
Sbjct: 87  RFHQDVTLSEVMALSAWMTIKNAAVNVPYGGAKGGIRVDPKTLSRGELQRVTRRYTSEIG 146

Query: 135 KLIGEKVDVPAPDVNTNGQIMSWMVDEYNKLTGQSSIGVITGKPVEFGGSLGRTAATGFG 194
            +IG   D+PAPDVNT+ QIM+WM+D Y+   G +S GV+TGKP+  GGSLGR  ATG G
Sbjct: 147 IIIGPNKDIPAPDVNTDSQIMAWMMDTYSMNQGSTSSGVVTGKPISLGGSLGRHEATGRG 206

Query: 195 VAVTAREAAAKLGIDMKKAKIAVQGIGNVGSYTVLNCEKLGGTVVAMAEWCKSEGSYAIY 254
           V V   EAAAK G+D+K AK+AVQG GNVG        + G  VVA+ +   +     ++
Sbjct: 207 VFVVGCEAAAKRGLDIKDAKVAVQGFGNVGGIAARLFAEAGSKVVAVQDHVTT-----VF 261

Query: 255 NENGLDGQAMLDYMKEHGNLLNFPGAKRIS-LEEFWASDVDIVIPAALENSITKEVAESI 313
           N  GLD  A+  Y+ ++G++  F GA  I+   +FW+ D DI++PAALE  IT+  A  I
Sbjct: 262 NAGGLDVPALQAYVAKNGSVKGFAGADEITDRAQFWSVDCDILVPAALEQQITEANANQI 321

Query: 314 KAKLVCEAANGPTTPEADEVFAERGIVLTPDILTNAGGVTVSYFEWVQNLYGYYWSEEEV 373
           KAK++ E ANGPTTP AD++  ++G+++ PD++ NAGGVTVSYFEWVQ+   ++W+E+E+
Sbjct: 322 KAKIILEGANGPTTPAADDILRDKGVLIVPDVIANAGGVTVSYFEWVQDFSSFFWTEDEI 381

Query: 374 EQKEEIAMVKAFESIWKIKEEYNVTMREAAYMHSIKKVAEAMKLRGWY 421
             +    M +AF ++W++ +E  V++R AA++ +  +V +A ++RG Y
Sbjct: 382 NLRLTRIMREAFAAVWQLADEKKVSLRTAAFIVACTRVLQAREMRGLY 429


Lambda     K      H
   0.315    0.133    0.390 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 477
Number of extensions: 17
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 421
Length of database: 430
Length adjustment: 32
Effective length of query: 389
Effective length of database: 398
Effective search space:   154822
Effective search space used:   154822
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 42 (22.0 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory