Align Exo-alpha-(1->6)-L-arabinopyranosidase; APY; Beta-D-galactopyranosidase; EC 3.2.1.- (characterized)
to candidate HSERO_RS23930 HSERO_RS23930 beta-D-glucoside glucohydrolase
Query= SwissProt::E7CY69 (757 letters) >FitnessBrowser__HerbieS:HSERO_RS23930 Length = 784 Score = 252 bits (643), Expect = 6e-71 Identities = 198/659 (30%), Positives = 308/659 (46%), Gaps = 78/659 (11%) Query: 69 TCFPPAAGLSSSWNPELIHKVGEAMAEECIQEKVAVILGPGVNIKRNPLGGRCFEYWSED 128 T FP GL+SSW+ +++ + AEE + + + P V+I R+P GR E + ED Sbjct: 133 TTFPIGLGLASSWDMDVVARAMRVSAEEAAADSIDMTFAPMVDISRDPRWGRTSEGFGED 192 Query: 129 PYLAGHEAIGIVEGVQ-------SKGVGTSLKHFAANNQ-ETDRLRVDARISPRALREIY 180 PYL A V +Q + V S+KHFA E R + P+ + Y Sbjct: 193 PYLVSRIAEVSVRALQGDTKPIAANRVMASVKHFALYGAVEGGRDYNVVNMDPQRMYNDY 252 Query: 181 FPAFEHIVKKAQPWTIMCSYNRINGVHSAQNHWLLTDVLRDEWGFDGIVMSDWGA----- 235 P + + A +M + N ING + N WLL D+LR +WGF G+ +SD GA Sbjct: 253 LPPYRAAID-AGAGAVMVALNSINGAPATSNTWLLQDLLRRDWGFKGLTVSDHGAITELV 311 Query: 236 -----DHDRGA---SLNAGLNLEMPPSYTDDQIVYAVRDGLITPAQLDRMAQGMI----D 283 +D A S+ AG ++ M Q+ VR G ++ +LD + ++ D Sbjct: 312 NHGVAQNDSEAARLSMKAGTDMSMADQVYIKQLPELVRSGKVSQQELDNAVRDILGAKYD 371 Query: 284 L-------VNKTRAAMSIDNYRFDVDAHDEVAHQAAIESIVMLKNDDAILPLNAGPVANP 336 L V RAA + D H A + A +S+V+L+N +A LPL Sbjct: 372 LGLFKDPYVRIGRAADDPPDVYADSRLHRRDAREVAQQSMVLLENRNAALPLKKNA---- 427 Query: 337 SATPQKIAVIGEFARTP-----RYQGGGSSHITPTKMTSFLDTLAERGIKADFAPGFTLD 391 +IA++G A + + G T T L +G K +A G + Sbjct: 428 -----RIALVGPLADSHIDMLGSWSAAGKDKQTITLRQGLQAALGGQG-KLVYARGANIT 481 Query: 392 -----------LEPADP----------ALESEAVETAKNADVVLMFLGLPEAVESEGFDR 430 L DP A+ EAV+ A++ADV++ +G + E R Sbjct: 482 EDKHIVDYLNFLNWDDPEVVQDKRSPKAMIDEAVKAARHADVIVAAVGESRGMSHESSSR 541 Query: 431 DTLDMPAKQIALLEQVAAANQNVVVVLSNGSVITVAPWAKNAKGILESWLLGQSGGPALA 490 +L +P Q+ LL+ + A + +V+VL NG + + +NA ILE+W G GG A+A Sbjct: 542 TSLSLPQSQLDLLKALKATGKPLVLVLMNGRPLDLNWARENASAILETWYTGTEGGNAIA 601 Query: 491 DVIFGQVSPSGKLAQSIPLDINDDPSMLNWPGEEGHVDYGEGVFAGY--RYYDTYGKAVD 548 D++FG V+PSGKL + P + PS N P G Y EG Y +Y+D + Sbjct: 602 DILFGDVNPSGKLPITFPRSVGQIPSYYNHP-RVGR-PYTEGKPGNYTSQYFDEPNGPL- 658 Query: 549 YPFGYGLSYATFEITGVAVAKTGANT---ATVTATVTNTSDVDAAETVQVYVVPGKADVA 605 YPFGYGLSY F+++ V++++ + + TV N A VQ+Y+ A V Sbjct: 659 YPFGYGLSYTEFKLSEVSLSQPSMSADGKVEASVTVKNVGRRAGATVVQLYLRDVAASVV 718 Query: 606 RPKHELKGFTKAFLKAGESKTVAIDLDERAFAYWSEKYNDWHVEAGEYAIEVGVSSRDI 664 RP ELK F K L+ GE K V +D +A ++++ K ++ E GE+ +++G+ S+++ Sbjct: 719 RPVKELKDFRKVMLQPGEEKQVQFSIDRKALSFYNAKL-EYVAEPGEFQVQIGLDSKEV 776 Lambda K H 0.315 0.132 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1312 Number of extensions: 59 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 757 Length of database: 784 Length adjustment: 41 Effective length of query: 716 Effective length of database: 743 Effective search space: 531988 Effective search space used: 531988 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 42 (22.0 bits) S2: 55 (25.8 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory