Align Putative acyl-CoA dehydrogenase AidB; EC 1.3.99.- (characterized)
to candidate HSERO_RS04905 HSERO_RS04905 acyl-CoA dehydrogenase
Query= SwissProt::P33224 (541 letters) >lcl|FitnessBrowser__HerbieS:HSERO_RS04905 HSERO_RS04905 acyl-CoA dehydrogenase Length = 550 Score = 476 bits (1224), Expect = e-138 Identities = 269/525 (51%), Positives = 330/525 (62%), Gaps = 11/525 (2%) Query: 5 THTVFNQPIPLNNSNLYLSDGALCEAVTREGAGWDSDFLASIGQQLGTAESLELGRLANV 64 TH + NQ L+ NLY SD AL EAV REGA W LAS G+ LG AE E+ LAN Sbjct: 3 THEITNQVPDLSGYNLYRSDAALAEAVQREGAHWHDCTLASQGELLGGAEMREMAELANR 62 Query: 65 NPPELLRYDAQGRRLDDVRFHPAWHLLMQALCTNRVHNLAWEEDARSGAFVARAARFMLH 124 + P L +D GRR+D V FHPAWH L+ L +H L W + GA ARAA + LH Sbjct: 63 HTPVLHTHDRCGRRIDVVEFHPAWHTLLDQLRRAGLHALPWMQPG-DGAHAARAAGYFLH 121 Query: 125 AQVEAGSLCPITMTFAATPLLLQMLPAPFQDWTTPLLSDRYDSHLLPGGQKRGLLIGMGM 184 AQ+EAGSLCP TMTFAA +L Q PA F+ T L S +D+ LP QKR +LIGMGM Sbjct: 122 AQIEAGSLCPTTMTFAAIAVL-QQEPALFEQLRTRLFSREHDARDLPIPQKRSILIGMGM 180 Query: 185 TEKQGGSDVMSNTTRA---ERLEDG---SYRLVGHKWFFSVPQSDAHLVLAQTAGGLSCF 238 TEKQGGSDV SN + A + L DG +Y L GHKWFFS P DAHL+LA+T GLSCF Sbjct: 181 TEKQGGSDVRSNASIAMPVDPLNDGRGAAYLLSGHKWFFSAPMCDAHLMLARTENGLSCF 240 Query: 239 FVPRFLPDGQRNAIRLERLKDKLGNRSNASCEVEFQDAIGWLLGLEGEGIRLILKMGGMT 298 FVPR+LPDG RN I ++RLKDKLGNRSN+S EVEF++A+G ++G EG GI I++M T Sbjct: 241 FVPRWLPDGTRNPILIQRLKDKLGNRSNSSSEVEFEEAMGIMVGDEGRGIPTIIEMANHT 300 Query: 299 RFDCALGSHAMMRRAFSLAIYHAHQRHVFGNPLIQQPLMRHVLSRMALQLEGQTALLFRL 358 R DC +GS A+MR+A AI+HA R FG L +QPLMR VL+ +AL+ E T L+ R+ Sbjct: 301 RLDCIIGSAALMRQALVQAIHHARHRSAFGRRLAEQPLMRAVLADLALESEAATMLMLRV 360 Query: 359 ARAWDRRADAKEALWARLFTPAAKFVICKRGMPFVAEAMEVLGGIGYCEESELPRLYREM 418 A A+D D + W R+ TPAAKF ICKR + F E MEV GG GY E + + RLYRE Sbjct: 361 AHAFDAPDDPLQRAWKRIITPAAKFWICKRTLEFTGECMEVWGGNGYVETAPMARLYREA 420 Query: 419 PVNSIWEGSGNIMCLDVLRVLNKQAGVYDLLSEAFVEVKGQDRYFDRAVRRLQQQLRKPA 478 PVNSIWEGSGN+MCLDVLR + ++ LL + + V L+Q L P Sbjct: 421 PVNSIWEGSGNVMCLDVLRAMARETQGLALLLLELDDAAAGHPALRQQVDALKQMLAAPE 480 Query: 479 EEL---GREITHQLFLLGCGAQMLKYASPPMAQAWCQVMLDTRGG 520 EE R + QL L G ML++A AQA+ + GG Sbjct: 481 EEREAGARRLVQQLVLALQGMLMLRHAPAGSAQAFLESRSQADGG 525 Lambda K H 0.324 0.138 0.428 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 745 Number of extensions: 32 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 541 Length of database: 550 Length adjustment: 35 Effective length of query: 506 Effective length of database: 515 Effective search space: 260590 Effective search space used: 260590 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory