Align Methylcrotonoyl-CoA carboxylase (EC 6.4.1.4) (characterized)
to candidate HSERO_RS01925 HSERO_RS01925 acetyl-CoA carboxylase biotin carboxylase subunit
Query= reanno::pseudo5_N2C3_1:AO356_01595 (649 letters) >lcl|FitnessBrowser__HerbieS:HSERO_RS01925 HSERO_RS01925 acetyl-CoA carboxylase biotin carboxylase subunit Length = 459 Score = 398 bits (1022), Expect = e-115 Identities = 211/429 (49%), Positives = 281/429 (65%), Gaps = 4/429 (0%) Query: 9 LLVANRGEIACRVMRTARAMGLTTVAVHSATDRDARHSREADIRVDLGGSKAADSYLQID 68 +L+ANRGEIA R+ R R +G+ TV VHS DR+A++ + AD V +G + + SYL + Sbjct: 5 ILIANRGEIALRIQRACRELGIKTVVVHSEADREAKYVKLADESVCIGPAPSTLSYLNMP 64 Query: 69 KLIAAAKASGAQAIHPGYGFLSENAGFARAIENAGLIFLGPPASAIDAMGSKSAAKTLME 128 +I+AA+ + AQAIHPGYGFLSENA FA +E +G +F+GP A I MG K +AK M Sbjct: 65 AIISAAEVTDAQAIHPGYGFLSENADFAERVEKSGFVFIGPRAENIRMMGDKVSAKQAMI 124 Query: 129 TAGVPLVPGYHGEAQDL-ETFRDAAERIGYPVLLKATAGGGGKGMKVVEDVSQLAEALAS 187 AGVP VPG G D + A +IGYPV++KA GGGG+GM+VV + L A+ Sbjct: 125 RAGVPCVPGSDGALPDNPKEIVQIARKIGYPVIIKAAGGGGGRGMRVVHTEAALINAVTM 184 Query: 188 AQREAQSSFGDSRMLVEKYLLKPRHVEIQVFADQHGNCLYLNERDCSIQRRHQKVVEEAP 247 + EA ++FG+ + +EKYL PRHVEIQ+ AD+H ++L ERDCS+QRRHQKV+EEAP Sbjct: 185 TKTEAGAAFGNPEVYMEKYLENPRHVEIQILADEHKQAIWLGERDCSMQRRHQKVIEEAP 244 Query: 248 APGLTPQLRRAMGEAAVRAAQAIGYVGAGTVEFLLDARGEFFFMEMNTRLQVEHPVTEAI 307 APG+ ++ +GE A + + Y GAGT EFL + EF+F+EMNTR+QVEHPVTE I Sbjct: 245 APGIPRKIIEKIGERCAEACRKMNYRGAGTFEFLYE-NEEFYFIEMNTRVQVEHPVTEMI 303 Query: 308 TGLDLVAWQIRVAQGEPLPITQAQVPLLGHAIEVRLYAEDPGNDFLPATGRLALYRESAE 367 TG+D+V QIR+A GE L Q + L GHAIE R+ AEDP F+P+ GR+ + Sbjct: 304 TGVDIVQEQIRIAAGEKLRYRQRDIELKGHAIECRINAEDPFK-FIPSPGRITAWHVPG- 361 Query: 368 GPGRRVDSGVEEGDEISPFYDPMLGKLIAWGEDREQARLRLLSMLDEFVIGGLKTNIGFL 427 GPG RVDS G + P YD M+GK+IA+G REQA R+ L E V+ G+ TNI Sbjct: 362 GPGIRVDSHAYSGYFVPPNYDSMVGKVIAYGATREQAIRRMQIALSEMVVEGISTNIPLH 421 Query: 428 RRIVAHPAF 436 R ++ F Sbjct: 422 RELMVDARF 430 Lambda K H 0.319 0.134 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 713 Number of extensions: 31 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 649 Length of database: 459 Length adjustment: 35 Effective length of query: 614 Effective length of database: 424 Effective search space: 260336 Effective search space used: 260336 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory