Align α-glucosidase (CmmB) (EC 3.2.1.20) (characterized)
to candidate HSERO_RS11645 HSERO_RS11645 alpha-amylase
Query= CAZy::BAI67603.1 (567 letters) >FitnessBrowser__HerbieS:HSERO_RS11645 Length = 1121 Score = 208 bits (530), Expect = 8e-58 Identities = 171/554 (30%), Positives = 255/554 (46%), Gaps = 82/554 (14%) Query: 20 WRDAVVYQVYLRSFRDANGDGIGDLGGLSQGLDAIAALGCDAIWLNPCYASPQRDHGYDI 79 ++DAV+YQ++++S+ DAN DGIGD GL Q LD I LG + IWL P Y SP+RD GYDI Sbjct: 10 YKDAVIYQIHVKSYFDANDDGIGDFAGLIQKLDYITGLGVNTIWLLPFYPSPRRDDGYDI 69 Query: 80 ADYLTIDPAYGTLEEFDEVVRRAHELGLRVLMDMVANHCSSDHAWFQAALAAEPGSDERA 139 ++Y + P YG + + + AHE GLRV+ ++V NH S H WFQ A A PGS R Sbjct: 70 SEYKNVHPDYGNMSDVRRFIAAAHEHGLRVITELVINHTSDQHPWFQRARRARPGSVARN 129 Query: 140 RFIFRDGLGPDGELPPNNWDSVFGGLAWTRVTERDGRPGQWYLHSFDTSQPDFDWRHPAV 199 +++ D + D+ W V + ++ H F + QPD ++ +P V Sbjct: 130 FYVWSDDDKSYADTRIIFVDTEKSNWTWDPVAK------AYFWHRFYSHQPDLNFDNPHV 183 Query: 200 AEHFENVLRFWFERGVDGFRIDVAHGHFKDAALPDHPGGRGPDAGHNHGMWDQPEVHDLY 259 + NV+ FW + G+DG R+D L + G + PE H + Sbjct: 184 LKAVLNVMSFWLDLGIDGLRLDAV------PYLIEREGTSNENL---------PETHAIL 228 Query: 260 RSWRALGDAYEPEKYFVGE--IWVPSPDRLADYL-RPDELHNAFSFDLLVQPWNA----D 312 + RA D+ P++ + E +W P+ + Y DE H AF F L+ + + A D Sbjct: 229 KRIRAEMDSKYPDRMLLAEANMW---PEDVQQYFGDSDECHMAFHFPLMPRMYMALASQD 285 Query: 313 RFRKAIETGLAVGRGWPA---WT--LANHD--VHRAVTRYGQEQPLDEALP---TDMIAA 362 RF I L PA W L NHD VT ++ + P + Sbjct: 286 RF--PITDILRQTPDIPADCQWAIFLRNHDELTLEMVTDAERDYLWNHYAPDRRARINLG 343 Query: 363 ARRRGPADLDRGLRRARAAAALALALPGSMYLYQGEELGLPEVLDLPDAARQDPIWTRSN 422 RRR ++R RR + + L++PG+ +Y G+E+G+ + + L D Sbjct: 344 IRRRLAPLVERDWRRIQLLNSFLLSMPGTPVIYYGDEIGMGDNIHLGD------------ 391 Query: 423 GTELGRDGCRIPLPWTREGRTFGFSDAAAATTWLP---QPAW-FGAFARATQAADPDSML 478 RDG R P+ WT + R GFS A LP P + + Q+AD SML Sbjct: 392 -----RDGVRTPMQWTPD-RNGGFSRVDPARLVLPLLMDPQYGYQTINVEAQSADRHSML 445 Query: 479 SLHRDLLATRRTHL---RGTEPIVWLSPAGAEVLAFRRGDVVVVTNFGSAPFTPPSAWGA 535 + R LL R+ H RG+ +V+ P+ ++ A+ R FT P GA Sbjct: 446 NWMRRLLNVRKQHQAFGRGSLALVY--PSNRKIFAYLR------------EFTDPRPGGA 491 Query: 536 LSPLLASQPLTGSA 549 +L ++ SA Sbjct: 492 TETILCVANVSQSA 505 Lambda K H 0.321 0.138 0.454 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1858 Number of extensions: 115 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 567 Length of database: 1121 Length adjustment: 41 Effective length of query: 526 Effective length of database: 1080 Effective search space: 568080 Effective search space used: 568080 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 55 (25.8 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory