Align Inositol transport system ATP-binding protein (characterized)
to candidate HSERO_RS22465 HSERO_RS22465 sugar ABC transporter
Query= reanno::Phaeo:GFF717 (261 letters) >lcl|FitnessBrowser__HerbieS:HSERO_RS22465 HSERO_RS22465 sugar ABC transporter Length = 518 Score = 158 bits (399), Expect = 3e-43 Identities = 93/246 (37%), Positives = 140/246 (56%), Gaps = 5/246 (2%) Query: 3 MSQPLIRMQGIEKHFGSVIALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGV--HKPT 60 MS+ L+ M+GI K FG V AL G+ + + PGEC L G+NGAGKST +K +SGV H Sbjct: 1 MSEYLLEMKGIVKSFGGVRALNGIDIKIRPGECVGLCGENGAGKSTLMKILSGVYPHGTW 60 Query: 61 KGDILFEGQPLHFADPRDAIAAGIATVHQHLAMIPLMSVSRNFFMGNEPIRKIGPLKLFD 120 +G+IL++G+PL RD AAGI +HQ L ++P +SV+ N FMG+E G + Sbjct: 61 EGEILWDGKPLQAHSVRDTEAAGIVIIHQELMLVPELSVAENIFMGHEITLPGGRMNYPA 120 Query: 121 HDYANRITMEEMRKMGINLRGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALG 180 M E+ IN+ P V GG +Q V IA+A++ A++LILDEP+S+L Sbjct: 121 MYRRAEELMRELNMPDINVALP---VSQYGGGHQQLVEIAKALNKDARLLILDEPSSSLT 177 Query: 181 VRQTANVLATIDKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEEL 240 + +L I ++ +GVA V+I+H + V D +V+ GK + T ++ +++ Sbjct: 178 ASEIGVLLKIIKDLKARGVACVYISHKLDEVAEVCDTISVIRDGKHIATTPMQEMDVDKI 237 Query: 241 QDMMAG 246 M G Sbjct: 238 ITQMVG 243 Score = 87.8 bits (216), Expect = 4e-22 Identities = 57/217 (26%), Positives = 103/217 (47%), Gaps = 6/217 (2%) Query: 26 VSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPT-KGDILFEGQPLHFADPRDAIAAGI 84 VS V GE + G GAG++ + + G ++ +G +L EG+P + P +I G+ Sbjct: 283 VSFSVRRGEILGIAGLVGAGRTELVSAIFGAYRGRYEGQVLLEGKPADTSSPLKSIRRGL 342 Query: 85 ATV---HQHLAMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDYANRITMEEMRKMGINLRG 141 V +H ++P + V +N + + + D + +E+ +M + Sbjct: 343 CMVPEDRKHHGIVPDLDVGQNITL--TVLNRFSRGSRIDGSAELKTIQDEIGRMRVKTAT 400 Query: 142 PDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTANVLATIDKVRKQGVAV 201 P + +LSGG +Q +A+ + KVLILDEPT + V A + I ++ K G+A+ Sbjct: 401 PFLPITSLSGGNQQKAVLAKMLLAQPKVLILDEPTRGVDVGAKAEIYRLISELAKAGLAI 460 Query: 202 VFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAE 238 + ++ + L V DR V+ G+ G ++S E Sbjct: 461 IMVSSELAEVLGVSDRVLVIGEGRLRGDFVNDNLSQE 497 Lambda K H 0.321 0.137 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 317 Number of extensions: 12 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 261 Length of database: 518 Length adjustment: 30 Effective length of query: 231 Effective length of database: 488 Effective search space: 112728 Effective search space used: 112728 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory