Align phenylacetate-CoA ligase (EC 6.2.1.30) (characterized)
to candidate HSERO_RS19285 HSERO_RS19285 long-chain fatty acid--CoA ligase
Query= BRENDA::A7KUK6 (562 letters) >FitnessBrowser__HerbieS:HSERO_RS19285 Length = 566 Score = 182 bits (461), Expect = 4e-50 Identities = 155/549 (28%), Positives = 252/549 (45%), Gaps = 52/549 (9%) Query: 32 DKIIYQDADTQ------RHYTYKSLRDASLDFGKGLKALYEWRKGDVLALFTPNSIDTPV 85 D+ Q AD Q ++ +Y+ L S G L+ L +KG +A+ PN + P+ Sbjct: 30 DEAFVQHADRQAYVCMGKYLSYRELDSLSRALGGWLQGL-GLQKGARVAIMMPNVLQYPI 88 Query: 86 VMWGTLWAGGTISPANPGYTVDELAFQLKNSHAKGLVTQASVLPVAREAAKKVGMPEDRI 145 + L AG T+ NP YT EL QLK+S A+ + + ++ + + Sbjct: 89 AIAAILRAGYTVVNVNPLYTARELEHQLKDSGAEAIFVLENFACTLQKVVAHTNIKHIVV 148 Query: 146 ILIGDQRDP------DARVKH-------------FTSVRNISGATRYRKQKITPAKD-VA 185 +G+ + V+H T + +S A Q +T D +A Sbjct: 149 ASMGELLGALKGTLVNLVVRHVKKLVPAWSLPNAITFSQALSQARGKTLQPVTLTHDDIA 208 Query: 186 FLVYSSGTTGVPKGVMISHRNIVANIRQQFIAEGEMLSWNGGPDGKGDRVLAF---LPFY 242 FL Y+ GTTGV KG +++HRN+VAN+ Q E GK L F LP Y Sbjct: 209 FLQYTGGTTGVAKGAVLTHRNLVANVLQ-----AEEWLTPALKAGKPIDQLVFVCALPLY 263 Query: 243 HIYGLT-CLITQALYKGYHLIVMSKFDIEKWCAHVQNYRCSFSYIVPPVVLLLGKHPVVD 301 HI+ LT C + +L++ + DI + + Y+ + V + L + Sbjct: 264 HIFALTVCNMLGTREGALNLLIPNPRDIPGFVKELAKYKVNTFPAVNTLYNALLNNADFA 323 Query: 302 KYDLSSLRMMNSGAAPLTQELVEAVYSRIKVGIKQGYGLSETSPTTHSQRWEDWREAMGS 361 + D S R G + + + + I +GYGLSETSP + E G+ Sbjct: 324 RLDFSGYRCCVGGGMAVQKSVADKWKKLTGCPIIEGYGLSETSPIASANPCTI-DEYTGT 382 Query: 362 VGRLMPNMQAKYMTMPEDGSEPKEVGEGEVGELYLKGPNVFLGYHENPEATKGCLSEDGW 421 +G +P+ + + + +DG + V G+ GE+ ++GP V GY + P+ T ++ DG+ Sbjct: 383 IGLPLPSTE--FAILDDDG---QPVPLGQPGEIAIRGPQVMPGYWQRPDETAKVMTPDGF 437 Query: 422 FQTGDVGYQDAKGNFYITDRVKELIKYKGFQVPPAELEGYLVDNDAIDDVAVIGIESETH 481 F+TGD+G D +G I DR K++I GF V P E+EG + + + + A +G+ E H Sbjct: 438 FKTGDIGVMDERGYTKIVDRKKDMILVSGFNVYPNEVEGVVAQHPGVLECACVGVPDE-H 496 Query: 482 GSEVPMACVVRSAKSKSSGTSEKDEAARIIKWLDSKVASHKRLRGGVHFVDEIPKNPSGK 541 E VVR K+ S AA+++ + + +K+ + + F DE+PK GK Sbjct: 497 TGEAVKLFVVRKDKTLS--------AAQLMDYCKEQFTGYKKPK-YIEFRDELPKTNVGK 547 Query: 542 ILRRILKQK 550 ILRR L+ + Sbjct: 548 ILRRELRDE 556 Lambda K H 0.317 0.136 0.410 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 738 Number of extensions: 37 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 562 Length of database: 566 Length adjustment: 36 Effective length of query: 526 Effective length of database: 530 Effective search space: 278780 Effective search space used: 278780 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory