Align 3-hydroxyacyl-CoA dehydrogenase PaaC (EC 1.1.1.-) (characterized)
to candidate HSERO_RS20645 HSERO_RS20645 3-hydroxyacyl-CoA dehydrogenase
Query= reanno::Marino:GFF2749 (506 letters) >FitnessBrowser__HerbieS:HSERO_RS20645 Length = 512 Score = 458 bits (1178), Expect = e-133 Identities = 250/498 (50%), Positives = 325/498 (65%), Gaps = 8/498 (1%) Query: 3 ALDTQTKVAVVGAGAMGSGIAQVAAQAGHQVYLHDQREGAAEAGRDGIAKQLQRRVDKGK 62 AL VAV+G+G MG+GIAQVAA AGH V L+D REGAA I L + V K K Sbjct: 9 ALSRSALVAVIGSGTMGAGIAQVAAVAGHPVLLYDSREGAAGKAIGAICTNLDKLVSKDK 68 Query: 63 MQQQELDDVIGRIHPVAKLDDVADAGLVIEAIIEDLQIKRQLLASLEDLCTADAILATNT 122 + RI L+++ A LVIEAI+E L K +L LE + + ILATNT Sbjct: 69 LTPALAQAASQRISVAQSLEELHQADLVIEAIVEQLAAKHELFGKLEAIVSTRCILATNT 128 Query: 123 SSISVTALGADMSKPERLVGMHFFNPAPLMALVEVVMGLATSKTVADTVHATATAWGKKP 182 SS+S+T + A + PER+VGMHFFNP P+MALVE++ GLA+ +A +H TA AWGK P Sbjct: 129 SSLSITQIAAGLQHPERVVGMHFFNPVPMMALVEIISGLASDAALAQCLHDTALAWGKTP 188 Query: 183 VYATSTPGFIVNRVARPFYAESLRLLQEQATDAATLDAIIREAGQFRMGAFELTDLIGHD 242 V A STPGFIVNR+ARP+YAE LR+L E AT+DA++REAG FRMG FEL DLIGHD Sbjct: 189 VMARSTPGFIVNRLARPYYAEGLRMLHEGGAQPATIDAVMREAGGFRMGPFELMDLIGHD 248 Query: 243 VNYAVTSSVFNSYYQDPRFLPSLIQKELVEAGRLGRKSGQGFYPYGESAEKPQPKTEPAH 302 VN+AVT SVF++Y+ DPRF PSLIQ+ELV AG LGRKSG+GFY YGE+A P+P+TE + Sbjct: 249 VNFAVTQSVFHAYFNDPRFTPSLIQQELVHAGYLGRKSGRGFYRYGEAAGAPRPETERDY 308 Query: 303 QSDESVIIAEGNPGVAAPLLERLKAAGLTIIERD--GPGQI--RFGDAVLALTDGRMATE 358 + G+ PL+E + ++R P Q+ + A L +TDGR AT Sbjct: 309 PKPTATPQLYGD----HPLVEMIHTRYPGQVQRHPARPDQLLMKVNAACLCITDGRSATL 364 Query: 359 RAACEGVANLVLFDLAFDYSKASRLALAPADQASDAAVSCACALLQKAGIEVSLIADRPG 418 RA +LVL DLA DY+ A+RLALA ADQ + +LQ G+++S + D PG Sbjct: 365 RAWEHQEPDLVLVDLALDYADATRLALAKADQCRPQRYAEVAGVLQACGLDLSPMQDVPG 424 Query: 419 LVIMRTVAMLANEAADAALHGVATVADIDLAMKAGLNYPDGPLSWSDRLGAGHVFKVLTN 478 +++MRTV ML NEAADA GV AD D+AM+ G+NYP GPL+W++ +G V +VL + Sbjct: 425 MMVMRTVCMLVNEAADAVNQGVCNAADADMAMRKGVNYPRGPLAWANEIGIDTVNQVLHH 484 Query: 479 IQTSYAEDRYRPALLLRK 496 + +Y EDRYR + LL++ Sbjct: 485 LCATYGEDRYRISPLLQR 502 Lambda K H 0.318 0.133 0.375 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 661 Number of extensions: 26 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 506 Length of database: 512 Length adjustment: 34 Effective length of query: 472 Effective length of database: 478 Effective search space: 225616 Effective search space used: 225616 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory