Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate HSERO_RS09465 HSERO_RS09465 aldehyde dehydrogenase
Query= BRENDA::P05091 (517 letters) >FitnessBrowser__HerbieS:HSERO_RS09465 Length = 506 Score = 382 bits (980), Expect = e-110 Identities = 217/488 (44%), Positives = 290/488 (59%), Gaps = 20/488 (4%) Query: 40 FINNEWHDAVSRKTFPTVNPSTGEVICQVAEGDKEDVDKAVKAARAAFQLGSPWRRMDAS 99 FI ++ V + F ++P G C+VA EDV+ A+ AA AA + W + + Sbjct: 22 FIGGKFVPPVKGEYFENISPVIGRAFCEVARSSAEDVELALDAAHAAKK---SWGKTSPT 78 Query: 100 HRGRLLNRLADLIERDRTYLAALETLDNGKPYVISYLVDLDMVLKCLRYYAGWADKYHGK 159 R +L ++AD +E + LA ETLDNGKP + D+ + + RY+A G Sbjct: 79 ERANMLLKIADRMEANLELLATAETLDNGKPIRETMAADIPLAIDHFRYFAAAVRTQEGS 138 Query: 160 TIPIDGDFFSYTRHEPVGVCGQIIPWNFPLLMQAWKLGPALATGNVVVMKVAEQTPLTAL 219 PID D ++Y HEP+GV GQIIPWNFP+LM WKL PALA GN VV+K AEQTP + + Sbjct: 139 ICPIDNDTYAYHFHEPLGVVGQIIPWNFPILMAVWKLAPALAAGNCVVLKPAEQTPASIM 198 Query: 220 YVANLIKEAGFPPGVVNIVPGFGPTAGAAIASHEDVDKVAFTGSTEIGRVIQVAAGSSNL 279 + LI + PPGVVNIV GFG AG +AS++ + K+AFTG T GR+I A S NL Sbjct: 199 VLIELIADL-IPPGVVNIVQGFGVEAGKPLASNKRIAKIAFTGETTTGRLIMQYA-SQNL 256 Query: 280 KRVTLELGGKSPNIIMSDA------DMDWAVEQAHFALF-FNQGQCCCAGSRTFVQEDIY 332 VTLELGGKSPNI +D D A+E FA+F NQG+ C SR VQE IY Sbjct: 257 IPVTLELGGKSPNIFFADVLDKDDDFFDKALE--GFAMFALNQGEVCTCPSRVLVQESIY 314 Query: 333 DEFVERSVARAKSRVVGNPFDSKTEQGPQVDETQFKKILGYINTGKQEGAKLLCGGG--- 389 + F+ER++ R + GNP D T G Q + Q +KIL YI+ GKQEGAK+L GGG Sbjct: 315 ERFIERALKRVAAIKQGNPLDKSTMIGAQASQEQLEKILSYIDIGKQEGAKVLAGGGREE 374 Query: 390 IAAD--RGYFIQPTVFGDVQDGMTIAKEEIFGPVMQILKFKTIEEVVGRANNSTYGLAAA 447 + D GY+++PTVF + M I +EEIFGPV+ + FK EE + AN++ YGL A Sbjct: 375 LGGDLASGYYVKPTVF-QGNNKMRIFQEEIFGPVVSVTTFKDEEEALAIANDTLYGLGAG 433 Query: 448 VFTKDLDKANYLSQALQAGTVWVNCYDVFGAQSPFGGYKMSGSGRELGEYGLQAYTEVKT 507 ++T+D +A + + +QAG VW NCY ++ A + FGGYK SG GRE + L Y + K Sbjct: 434 LWTRDGTRAFRMGREIQAGRVWTNCYHLYPAHAAFGGYKQSGIGRENHKMMLDHYQQTKN 493 Query: 508 VTVKVPQK 515 + V K Sbjct: 494 LLVSYSPK 501 Lambda K H 0.319 0.136 0.409 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 630 Number of extensions: 31 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 517 Length of database: 506 Length adjustment: 35 Effective length of query: 482 Effective length of database: 471 Effective search space: 227022 Effective search space used: 227022 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory