Align NAD(P)-dependent succinate-semialdehyde dehydrogenase (EC 1.2.1.16) (characterized)
to candidate HSERO_RS05395 HSERO_RS05395 succinate-semialdehyde dehdyrogenase
Query= metacyc::MONOMER-15736 (480 letters) >lcl|FitnessBrowser__HerbieS:HSERO_RS05395 HSERO_RS05395 succinate-semialdehyde dehdyrogenase Length = 484 Score = 695 bits (1794), Expect = 0.0 Identities = 342/481 (71%), Positives = 397/481 (82%), Gaps = 2/481 (0%) Query: 1 MQLKDAQLFRQQAFIDGAWVDADNGQTIKVNNPATGEILGTVPKMGAAETRRAIEAADKA 60 +QLKD L RQQAF++G W DAD G+ + V+NPA GE+LG VP MGAAETRRAIEAA+ A Sbjct: 2 LQLKDPALLRQQAFVNGQWCDADQGERLAVHNPANGELLGHVPLMGAAETRRAIEAANAA 61 Query: 61 LPAWRALTAKERATKLRRWYELLIENQDDLGRLMTLEQGKPLAEAKGEIAYAASFIEWFA 120 PAW+ TAKER+ LRRWYEL++ N DDL +MT EQGKPLAEA+GEI YAASFIEWFA Sbjct: 62 WPAWKKKTAKERSAILRRWYELMLANTDDLALIMTAEQGKPLAEARGEIGYAASFIEWFA 121 Query: 121 EEAKRIYGDVIPGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVIK 180 EE KR YGD IP P R++VIK+ IGV AAITPWNFPAAMITRKAGPALAAGC MV+K Sbjct: 122 EEGKRTYGDTIPSPSPSNRIVVIKEAIGVCAAITPWNFPAAMITRKAGPALAAGCPMVLK 181 Query: 181 PASQTPFSALALVELAHRAGIPKGVLSVVTGSAGDIGGELTSNPIVRKLSFTGSTEIGRQ 240 PA TPFSALAL LA RAGIP GV SVVTG+ IGGE+TSNPIVRK+SFTGST +G+ Sbjct: 182 PAEATPFSALALAVLAERAGIPAGVFSVVTGTPKGIGGEMTSNPIVRKISFTGSTGVGKL 241 Query: 241 LMAECAKDIKKVSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRLYIQDS 300 LM + A IKK+SLELGGNAPFIVFDDADLD AVEGAI SKYRN GQTCVCANR+Y+QD Sbjct: 242 LMQQSASSIKKLSLELGGNAPFIVFDDADLDAAVEGAIASKYRNAGQTCVCANRIYVQDG 301 Query: 301 VYDAFAEKLKAAVAKLKIGNGLEEGTTTGPLIDEKAVAKVQEHIADALKKGATLLAGGK- 359 VYDAFA KL AV K K+G G EEG T GPLI+E+AV KV++H+ADA+ KGA +L GGK Sbjct: 302 VYDAFAAKLVEAVKKFKVGQGTEEGVTQGPLINEQAVQKVEQHVADAVAKGARVLLGGKR 361 Query: 360 -SMEGNFFEPTILVNVPKDAAVAKEETFGPLAPLFRFKDEAEVIAMSNDTEFGLASYFYA 418 ++ +FFEPT+L +V VA+EETFGP+APLFRFK + EV+A++NDTEFGLASYFY+ Sbjct: 362 HALGHSFFEPTVLADVTPAMQVAREETFGPMAPLFRFKTDEEVLALANDTEFGLASYFYS 421 Query: 419 RDLGRVFRVAEALEYGMVGVNTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYLCL 478 RD+GR++RVAE LE GMVG+NTGLISNEVAPFGG+K SGLGREGS YGI+DYL +KYLC+ Sbjct: 422 RDIGRIWRVAEGLESGMVGINTGLISNEVAPFGGVKQSGLGREGSHYGIDDYLVVKYLCM 481 Query: 479 G 479 G Sbjct: 482 G 482 Lambda K H 0.317 0.135 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 698 Number of extensions: 12 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 480 Length of database: 484 Length adjustment: 34 Effective length of query: 446 Effective length of database: 450 Effective search space: 200700 Effective search space used: 200700 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory