Align Formate-dependent phosphoribosylglycinamide formyltransferase; 5'-phosphoribosylglycinamide transformylase 2; Formate-dependent GAR transformylase; GAR transformylase 2; GART 2; Non-folate glycinamide ribonucleotide transformylase; Phosphoribosylglycinamide formyltransferase 2; EC 2.1.2.- (characterized)
to candidate HSERO_RS11090 HSERO_RS11090 phosphoribosylglycinamide formyltransferase
Query= SwissProt::P33221 (392 letters) >FitnessBrowser__HerbieS:HSERO_RS11090 Length = 403 Score = 435 bits (1118), Expect = e-126 Identities = 242/395 (61%), Positives = 283/395 (71%), Gaps = 8/395 (2%) Query: 2 TLLGTALRPAATRVMLLGSGELGKEVAIECQRLGVEVIAVDRYADAPAMHVAHRSHVINM 61 T LGT L +AT+VMLLGSGELGKEV I QRLGVEVIAVDRY +AP VAHR+HVINM Sbjct: 5 TRLGTPLSSSATKVMLLGSGELGKEVIIALQRLGVEVIAVDRYENAPGHQVAHRAHVINM 64 Query: 62 LDGDALRRVVELEKPHYIVPEIEAIATDMLIQLEEEGL-NVVPCARATKLTMNREGIRRL 120 DG AL ++E EKP IVPEIEAIAT+ L++LEE GL V+P ARA LTMNREGIRRL Sbjct: 65 TDGAALAALIEQEKPDLIVPEIEAIATETLVKLEEAGLARVIPTARAAWLTMNREGIRRL 124 Query: 121 AAEELQLPTSTYRFADSESLFREAVADIGYPCIVKPVMSSSGKGQTFIRSAEQLAQAWKY 180 A E L L TS YRFADS + A+ IGYPC++KPVMSSSGKGQ+ I +++ AW Y Sbjct: 125 AGETLGLATSPYRFADSLEELKAAIDQIGYPCVIKPVMSSSGKGQSKIDGPDEIESAWNY 184 Query: 181 AQQGGRAGAGRVIVEGVVKFDFEITLLTVSAVDG-----VHFCAPVGHRQEDGDYRESWQ 235 A GGR AGRVIVEG + FD+EITLLTV +++ FC P+GH Q GDY ESWQ Sbjct: 185 AAAGGRVDAGRVIVEGFIDFDYEITLLTVRSLNENGDTVTSFCDPIGHVQVKGDYVESWQ 244 Query: 236 PQQMSPLALERAQEIARKVVLALGGYGLFGVELFVCGDEVIFSEVSPRPHDTGMVTLISQ 295 P M ALE+A++IARKV LGG GLFGVELFV GD V FSEVSPRPHDTGMVT++SQ Sbjct: 245 PHPMPGAALEKARDIARKVTENLGGLGLFGVELFVKGDMVWFSEVSPRPHDTGMVTMVSQ 304 Query: 296 DLSEFALHVRAFLGLPVGGIRQYGPAASAVILPQLTSQNVTFDNVQNAVG-ADLQIRLFG 354 SEF LH +A LGLPV + P ASAVI Q ++ + FD V A+ +IRLFG Sbjct: 305 VQSEFELHAKAILGLPVNTALR-TPGASAVIYGQHEARGIAFDGVAEALRIPGAEIRLFG 363 Query: 355 KPEIDGSRRLGVALATAESVVDAIERAKHAAGQVK 389 KPE RR+GVALA+A++V A RAK AA +VK Sbjct: 364 KPESFARRRMGVALASADNVETARIRAKQAAAKVK 398 Lambda K H 0.320 0.136 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 465 Number of extensions: 23 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 392 Length of database: 403 Length adjustment: 31 Effective length of query: 361 Effective length of database: 372 Effective search space: 134292 Effective search space used: 134292 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory