Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate HSERO_RS05645 HSERO_RS05645 succinate-semialdehyde dehdyrogenase
Query= BRENDA::P51650 (523 letters) >FitnessBrowser__HerbieS:HSERO_RS05645 Length = 493 Score = 499 bits (1284), Expect = e-145 Identities = 249/485 (51%), Positives = 336/485 (69%), Gaps = 7/485 (1%) Query: 45 DLLRGDSFVGGRWLPTP--ATFPVYDPASGAKLGTVADCGVPEARAAVRAAYDAFSSWKE 102 DL+ G +G W V DPA+G +V D G +ARAAV AA AF++W+ Sbjct: 10 DLMPGAQLIGADWRGAADGRQLDVSDPATGQVFASVPDGGAADARAAVEAAVAAFAAWRA 69 Query: 103 ISVKERSSLLRKWYDLMIQNKDELAKIITAESGKPLKEAQGEILYSAFFLEWFSEEARRV 162 K+R+ ++++W DL++ ++D+L ++I+ E GKPL EA+GE+ Y+A ++EWF EEA R Sbjct: 70 TPAKQRAGIIKRWNDLLLAHQDDLGRLISREQGKPLAEAKGEVAYAASYVEWFGEEATRA 129 Query: 163 YGDIIYTSAKDKRGLVLKQPVGVASIITPWNFPSAMITRKVGAALAAGCTVVVKPAEDTP 222 GDII +R + LK+PVGV + ITPWNFP+AMI RK+ ALAAGCTVV KPAEDTP Sbjct: 130 NGDIIPAPVTGRRMMALKEPVGVVAAITPWNFPAAMIARKIAPALAAGCTVVCKPAEDTP 189 Query: 223 YSALALAQLANQAGIPPGVYNVIPCSRTKAKEVGEVLCTDPLVSKISFTGSTATGKILLH 282 ++LAL +LA +AG+P GV N++ SR + EV +V D V KISFTGSTA GK L Sbjct: 190 LTSLALVRLAQEAGVPVGVINIVTASRERTPEVVDVWLADGRVRKISFTGSTAVGKHLAR 249 Query: 283 HAANSVKRVSMELGGLAPFIVFDSANVDQAVAGAMASKFRNAGQTCVCSNRFLVQRGIHD 342 H+A+++K++S+ELGG APFIVFD A+VD A+ G MA+KFRN GQTCV NR VQ ++D Sbjct: 250 HSADTLKKLSLELGGNAPFIVFDDADVDAAIDGVMAAKFRNGGQTCVSPNRIYVQEKVYD 309 Query: 343 SFVTKFAEAMKKSLRVGNGFEEGTTQGPLINEKAVEKVEKHVNDAVAKGATVVTGGKRHQ 402 +FV K A +L+VG + + GP+IN +A+ K+++HV DA+A+GA V+TGGKR Q Sbjct: 310 AFVDKLG-ARVAALKVGPATDPASQIGPMINARAIAKIDQHVRDAIARGARVITGGKRLQ 368 Query: 403 SGG----NFFEPTLLSNVTRDMLCITEETFGPVAPVIKFDKEEEAVAIANAADVGLAGYF 458 G N++ PT+L++VT M C EETFGPVAP+ +F E+E +A ANA GLA YF Sbjct: 369 GPGFGSDNYYAPTVLADVTGAMQCSCEETFGPVAPITRFATEDEVIAAANATPFGLAAYF 428 Query: 459 YSQDPAQIWRVAEQLEVGMVGVNEGLISSVECPFGGVKQSGLGREGSKYGIDEYLEVKYV 518 YS D +I RV + LE G+VGVNEG +++ PFGGVK+SG GREGS +G+D+YL KYV Sbjct: 429 YSTDVRRIHRVTDALESGIVGVNEGALAAEAAPFGGVKESGYGREGSVHGLDDYLHTKYV 488 Query: 519 CYGGL 523 C G L Sbjct: 489 CQGQL 493 Lambda K H 0.318 0.135 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 666 Number of extensions: 29 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 523 Length of database: 493 Length adjustment: 34 Effective length of query: 489 Effective length of database: 459 Effective search space: 224451 Effective search space used: 224451 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory