Align Propionyl-CoA carboxylase, biotin carboxylase and biotin-carboxyl carrier subunit; PCC; EC 6.4.1.3; EC 6.3.4.14 (characterized)
to candidate HSERO_RS01925 HSERO_RS01925 acetyl-CoA carboxylase biotin carboxylase subunit
Query= SwissProt::I3R7G3 (601 letters) >lcl|FitnessBrowser__HerbieS:HSERO_RS01925 HSERO_RS01925 acetyl-CoA carboxylase biotin carboxylase subunit Length = 459 Score = 447 bits (1149), Expect = e-130 Identities = 225/445 (50%), Positives = 304/445 (68%), Gaps = 2/445 (0%) Query: 1 MFSKVLVANRGEIAVRVMRACEELGVRTVAVYSEADKHGGHVRYADEAYNIGPARAADSY 60 MF K+L+ANRGEIA+R+ RAC ELG++TV V+SEAD+ +V+ ADE+ IGPA + SY Sbjct: 1 MFEKILIANRGEIALRIQRACRELGIKTVVVHSEADREAKYVKLADESVCIGPAPSTLSY 60 Query: 61 LDHESVIEAARKADADAIHPGYGFLAENAEFARKVEDSEFTWVGPSADAMERLGEKTKAR 120 L+ ++I AA DA AIHPGYGFL+ENA+FA +VE S F ++GP A+ + +G+K A+ Sbjct: 61 LNMPAIISAAEVTDAQAIHPGYGFLSENADFAERVEKSGFVFIGPRAENIRMMGDKVSAK 120 Query: 121 SLMQDADVPVVPGTTEPA-DSAEDVKAVADDYGYPVAIKAEGGGGGRGLKVVHSEDEVDG 179 M A VP VPG+ D+ +++ +A GYPV IKA GGGGGRG++VVH+E + Sbjct: 121 QAMIRAGVPCVPGSDGALPDNPKEIVQIARKIGYPVIIKAAGGGGGRGMRVVHTEAALIN 180 Query: 180 QFETAKREGEAYFDNASVYVEKYLEAPRHIEVQILADEHGNVRHLGERDCSLQRRHQKVI 239 K E A F N VY+EKYLE PRH+E+QILADEH LGERDCS+QRRHQKVI Sbjct: 181 AVTMTKTEAGAAFGNPEVYMEKYLENPRHVEIQILADEHKQAIWLGERDCSMQRRHQKVI 240 Query: 240 EEAPSPALSEDLRERIGEAARRGVRAAEYTNAGTVEFLVEDGEFYFMEVNTRIQVEHTVT 299 EEAP+P + + E+IGE R Y AGT EFL E+ EFYF+E+NTR+QVEH VT Sbjct: 241 EEAPAPGIPRKIIEKIGERCAEACRKMNYRGAGTFEFLYENEEFYFIEMNTRVQVEHPVT 300 Query: 300 EEVTGLDVVKWQLRVAAGEELDFSQDDVEIEGHSMEFRINAEAPEKEFAPATGTLSTYDP 359 E +TG+D+V+ Q+R+AAGE+L + Q D+E++GH++E RINAE P K F P+ G ++ + Sbjct: 301 EMITGVDIVQEQIRIAAGEKLRYRQRDIELKGHAIECRINAEDPFK-FIPSPGRITAWHV 359 Query: 360 PGGIGIRMDDAVRQGDEIGGDYDSMIAKLIVTGSDREEVLVRAERALNEFDIEGLRTVIP 419 PGG GIR+D G + +YDSM+ K+I G+ RE+ + R + AL+E +EG+ T IP Sbjct: 360 PGGPGIRVDSHAYSGYFVPPNYDSMVGKVIAYGATREQAIRRMQIALSEMVVEGISTNIP 419 Query: 420 FHRLMLTDEAFREGSHTTKYLDEVL 444 HR ++ D F EG YL+ L Sbjct: 420 LHRELMVDARFFEGGTNIHYLEHKL 444 Lambda K H 0.312 0.132 0.371 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 635 Number of extensions: 21 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 601 Length of database: 459 Length adjustment: 35 Effective length of query: 566 Effective length of database: 424 Effective search space: 239984 Effective search space used: 239984 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.2 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 42 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory