Align Aldehyde dehydrogenase; Acetaldehyde dehydrogenase; EC 1.2.1.3 (characterized)
to candidate 17649 b3588 aldehyde dehydrogenase B (lactaldehyde dehydrogenase) (VIMSS)
Query= SwissProt::A1B4L2 (508 letters) >FitnessBrowser__Keio:17649 Length = 512 Score = 741 bits (1914), Expect = 0.0 Identities = 356/507 (70%), Positives = 416/507 (82%) Query: 2 PNDQTHPFRGVNALPFEERYDNFIGGEWVAPVSGRYFTNTTPITGAEIGQIARSEAGDIE 61 P+ Q P L + RYDNFIGGEWVAP G Y+ N TP+TG + ++A S DI+ Sbjct: 6 PSAQIKPGEYGFPLKLKARYDNFIGGEWVAPADGEYYQNLTPVTGQLLCEVASSGKRDID 65 Query: 62 LALDAAHAAKEKWGATSPAERANIMLKIADRMERNLELLATAETWDNGKPIRETMAADLP 121 LALDAAH K+KW TS +RA I+ KIADRME+NLELLATAETWDNGKPIRET AAD+P Sbjct: 66 LALDAAHKVKDKWAHTSVQDRAAILFKIADRMEQNLELLATAETWDNGKPIRETSAADVP 125 Query: 122 LAIDHFRYFAGVLRAQEGSISQIDDDTVAYHFHEPLGVVGQIIPWNFPLLMACWKLAPAI 181 LAIDHFRYFA +RAQEG IS++D +TVAYHFHEPLGVVGQIIPWNFPLLMA WK+APA+ Sbjct: 126 LAIDHFRYFASCIRAQEGGISEVDSETVAYHFHEPLGVVGQIIPWNFPLLMASWKMAPAL 185 Query: 182 AAGNCVVLKPAEQTPAGIMVWANLIGDLLPPGVLNIVNGFGLEAGKPLASSNRIAKIAFT 241 AAGNCVVLKPA TP +++ ++GDLLPPGV+N+VNG G G+ LA+S RIAK+AFT Sbjct: 186 AAGNCVVLKPARLTPLSVLLLMEIVGDLLPPGVVNVVNGAGGVIGEYLATSKRIAKVAFT 245 Query: 242 GETTTGRLIMQYASENLIPVTLELGGKSPNIFFADVAREDDDFFDKALEGFTMFALNQGE 301 G T G+ IMQYA++N+IPVTLELGGKSPNIFFADV E+D FFDKALEGF +FA NQGE Sbjct: 246 GSTEVGQQIMQYATQNIIPVTLELGGKSPNIFFADVMDEEDAFFDKALEGFALFAFNQGE 305 Query: 302 VCTCPSRVLIQESIYDKFMERAVQRVQAIKQGDPRESDTMIGAQASSEQKEKILSYLDIG 361 VCTCPSR L+QESIY++FMERA++RV++I+ G+P +S T +GAQ S Q E IL+Y+DIG Sbjct: 306 VCTCPSRALVQESIYERFMERAIRRVESIRSGNPLDSVTQMGAQVSHGQLETILNYIDIG 365 Query: 362 KKEGAEVLTGGKAADLGGELSGGYYIEPTIFRGNNKMRIFQEEIFGPVVSVTTFKDQAEA 421 KKEGA+VLTGG+ L GEL GYY+EPTI G N MR+FQEEIFGPV++VTTFK EA Sbjct: 366 KKEGADVLTGGRRKLLEGELKDGYYLEPTILFGQNNMRVFQEEIFGPVLAVTTFKTMEEA 425 Query: 422 LEIANDTLYGLGAGVWSRDANTCYRMGRGIKAGRVWTNCYHAYPAHAAFGGYKQSGIGRE 481 LE+ANDT YGLGAGVWSR+ N Y+MGRGI+AGRVWTNCYHAYPAHAAFGGYKQSGIGRE Sbjct: 426 LELANDTQYGLGAGVWSRNGNLAYKMGRGIQAGRVWTNCYHAYPAHAAFGGYKQSGIGRE 485 Query: 482 THKMMLDHYQQTKNMLVSYSPKKLGFF 508 THKMML+HYQQTK +LVSYS K LG F Sbjct: 486 THKMMLEHYQQTKCLLVSYSDKPLGLF 512 Lambda K H 0.319 0.136 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 870 Number of extensions: 21 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 508 Length of database: 512 Length adjustment: 34 Effective length of query: 474 Effective length of database: 478 Effective search space: 226572 Effective search space used: 226572 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory