Align Benzoate--CoA ligase; Benzoyl-CoA synthetase; EC 6.2.1.25 (characterized)
to candidate 15923 b1805 acyl-CoA synthase (NCBI)
Query= SwissProt::Q8GQN9 (527 letters) >FitnessBrowser__Keio:15923 Length = 561 Score = 174 bits (440), Expect = 1e-47 Identities = 143/541 (26%), Positives = 236/541 (43%), Gaps = 43/541 (7%) Query: 19 PERYNAADDLIGRNLLAGRGGKTVYIDDAGSYTYDELALRVNRCGSALRTTLGLQPKDRV 78 P+RY + D+ +++ A + +++ T+ +L R + L+ LGL+ DRV Sbjct: 19 PDRYQSLVDMFEQSV-ARYADQPAFVNMGEVMTFRKLEERSRAFAAYLQQGLGLKKGDRV 77 Query: 79 LVCVLDGIDFPTTFLGAIKGGVVPIAINTLLTESDYEYMLTDSAARVAVVSQELLPLFAP 138 + + + + +P G ++ G++ + +N L T + E+ L DS A V+ Sbjct: 78 ALMMPNLLQYPVALFGILRAGMIVVNVNPLYTPRELEHQLNDSGASAIVIVSNFAHTLEK 137 Query: 139 MLGKVPTLEHLVVAGGAGEDSLA-----------------------------ALLATGSE 169 ++ K ++H+++ + S A AL Sbjct: 138 VVDKT-AVQHVILTRMGDQLSTAKGTVVNFVVKYIKRLVPKYHLPDAISFRSALHNGYRM 196 Query: 170 QFEAAPTRPDDHCFWLYSSGSTGAPKGTVHIHSDLIHTAELYAR---PILGIREGDVVFS 226 Q+ P+D F Y+ G+TG KG + H +++ E P+L + ++V + Sbjct: 197 QYVKPELVPEDLAFLQYTGGTTGVAKGAMLTHRNMLANLEQVNATYGPLLHPGK-ELVVT 255 Query: 227 AAKLFFAYGLG-NGLIFPLAVGATAVLMAERPTPAAVFERLRRHQPDIFYGVPTLYASML 285 A L+ + L N L+F G ++ R P V E L ++ GV TL+ ++L Sbjct: 256 ALPLYHIFALTINCLLFIELGGQNLLITNPRDIPGLVKE-LAKYPFTAITGVNTLFNALL 314 Query: 286 ANPDCPKEGELRLRACTSAGEALPEDVGRRWQARFGVDILDGIGSTEMLHIFLSNRAG-D 344 N + + L G + + V RW G +L+G G TE + N D Sbjct: 315 NNKEFQQLDFSSLHLSAGGGMPVQQVVAERWVKLTGQYLLEGYGLTECAPLVSVNPYDID 374 Query: 345 VHYGTSGKPVPGYRLRLIDEDGAEITTAGVAGELQISGPSSAVMYWNNPEKTAATFMGEW 404 H G+ G PVP +L+D+D E+ G GEL + GP + YW P+ T W Sbjct: 375 YHSGSIGLPVPSTEAKLVDDDDNEVPP-GQPGELCVKGPQVMLGYWQRPDATDEIIKNGW 433 Query: 405 TRSGDKYLVNDEGYYVYAGRSDDMLKVSGIYVSPIEVESALIAHEAVLEAAVVGWEDEDH 464 +GD ++++EG+ R DM+ VSG V P E+E ++ H V E A VG Sbjct: 434 LHTGDIAVMDEEGFLRIVDRKKDMILVSGFNVYPNEIEDVVMQHPGVQEVAAVGVPSGSS 493 Query: 465 LIKPKAFIVLKPGYGAGEALRTDLKAHVKNLLAPYKYPRWIEFVDDLPKTATGKIQRFKL 524 K F+V K E+L T + L YK P+ +EF D+LPK+ GKI R +L Sbjct: 494 GEAVKIFVVKKDPSLTEESLVT----FCRRQLTGYKVPKLVEFRDELPKSNVGKILRREL 549 Query: 525 R 525 R Sbjct: 550 R 550 Lambda K H 0.319 0.138 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 692 Number of extensions: 46 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 527 Length of database: 561 Length adjustment: 35 Effective length of query: 492 Effective length of database: 526 Effective search space: 258792 Effective search space used: 258792 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory