Align N-acetylglucosamine-specific PTS system, IIBC components (nagE) (characterized)
to candidate 14809 b0679 fused N-acetyl glucosamine specific PTS enzyme: IIC, IIB , and IIA components (NCBI)
Query= reanno::BFirm:BPHYT_RS02745 (591 letters) >FitnessBrowser__Keio:14809 Length = 648 Score = 543 bits (1398), Expect = e-158 Identities = 275/506 (54%), Positives = 348/506 (68%), Gaps = 12/506 (2%) Query: 10 QRLGRALMLPIAVLPVAGLLLRLGQPDVFNIKMIADAGGAIFDNLPLLFAIGVAVGFAKD 69 QRLGRAL LPIAVLPVA LLLR GQPD+ N+ IA AGGAIFDNL L+FAIGVA ++KD Sbjct: 8 QRLGRALQLPIAVLPVAALLLRFGQPDLLNVAFIAQAGGAIFDNLALIFAIGVASSWSKD 67 Query: 70 NNGVAGLAGAIGYLIEVAVMKDINDKLNMGVLSGIVAGIVAGLLYNRYKDIKLPDYLAFF 129 + G A LAGA+GY + M IN ++NMGVL+GI+ G+V G YNR+ DIKLPD+L+FF Sbjct: 68 SAGAAALAGAVGYFVLTKAMVTINPEINMGVLAGIITGLVGGAAYNRWSDIKLPDFLSFF 127 Query: 130 GGKRFVPIVTGVVCLVLGIAFGYVWQPVQAVIDTAGHWLTTAGALGAFVFGVLNRLLLVT 189 GGKRFVPI TG CLVL FGYVW PVQ I G W+ +AGALG+ +FG +NRLL+ T Sbjct: 128 GGKRFVPIATGFFCLVLAAIFGYVWPPVQHAIHAGGEWIVSAGALGSGIFGFINRLLIPT 187 Query: 190 GLHHILNSLTWFVFGTFTPPGGAAVTGDLHRFFAGDPTAGTFMTGFFPVMMFGLPAACLA 249 GLH +LN++ WF G FT G GD++RF+AGD TAG FM+GFFP+MMFGLP A LA Sbjct: 188 GLHQVLNTIAWFQIGEFTNAAGTVFHGDINRFYAGDGTAGMFMSGFFPIMMFGLPGAALA 247 Query: 250 MFHEAPKERRAVVGGLLFSMALTSFLTGVTEPIEFSFMFLAPVLYVIHALLTGISLAICS 309 M+ APKERR +VGG+L S+A+T+FLTGVTEP+EF FMFLAP+LY++HALLTGISL + + Sbjct: 248 MYFAAPKERRPMVGGMLLSVAVTAFLTGVTEPLEFLFMFLAPLLYLLHALLTGISLFVAT 307 Query: 310 ALGIHLGFTFSAGAIDYVLNYGL---STRGWWAIPIGLVYMVVYYGLFRFFIRKFNMATP 366 LGIH GF+FSAGAIDY L Y L S W + +G+++ +Y+ +F IR FN+ TP Sbjct: 308 LLGIHAGFSFSAGAIDYALMYNLPAASQNVWMLLVMGVIFFAIYFVVFSLVIRMFNLKTP 367 Query: 367 GREPAAADEQVDSFAAGGFVSPVAGTAVPRAQRYIAALGGASNLSVVDACTTRLRLSVVD 426 GRE ++ D S A YIAA+GG NL +DAC TRLRL+V D Sbjct: 368 GRE-----DKEDEIVTEEANSNTEEGLTQLATNYIAAVGGTDNLKAIDACITRLRLTVAD 422 Query: 427 SNKVSENELKTIGARGVLKRGSTNVQVIIGPEADIIADEIRTVIAQGGGDAVK----PAA 482 S +V++ K +GA GV+K +QVI+G +A+ I D ++ V+A+G A PA Sbjct: 423 SARVNDTMCKRLGASGVVKLNKQTIQVIVGAKAESIGDAMKKVVARGPVAAASAEATPAT 482 Query: 483 AAPAQVVAAAPVAASVAQGSGPLDPD 508 AAP A P A S+A+ P+ D Sbjct: 483 AAPVAKPQAVPNAVSIAELVSPITGD 508 Lambda K H 0.325 0.141 0.426 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1230 Number of extensions: 68 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 591 Length of database: 648 Length adjustment: 37 Effective length of query: 554 Effective length of database: 611 Effective search space: 338494 Effective search space used: 338494 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory