Align L-arabinose ABC transporter, ATP-binding protein AraG; EC 3.6.3.17 (characterized)
to candidate 17809 b3749 fused D-ribose transporter subunits of ABC superfamily: ATP-binding components (NCBI)
Query= CharProtDB::CH_014279 (504 letters) >FitnessBrowser__Keio:17809 Length = 501 Score = 404 bits (1037), Expect = e-117 Identities = 212/495 (42%), Positives = 327/495 (66%), Gaps = 3/495 (0%) Query: 8 LSFRGIGKTFPGVKALTDISFDCYAGQVHALMGENGAGKSTLLKILSGNYAPTTGSVVIN 67 L +GI K FPGVKAL+ + + Y G+V AL+GENGAGKST++K+L+G Y G+++ Sbjct: 5 LQLKGIDKAFPGVKALSGAALNVYPGRVMALVGENGAGKSTMMKVLTGIYTRDAGTLLWL 64 Query: 68 GQEMSFSDTTAALNAGVAIIYQELHLVPEMTVAENIYLG-QLPHKGGIVNRSLLNYEAGL 126 G+E +F+ ++ AG+ II+QEL+L+P++T+AENI+LG + ++ G ++ + EA Sbjct: 65 GKETTFTGPKSSQEAGIGIIHQELNLIPQLTIAENIFLGREFVNRFGKIDWKTMYAEADK 124 Query: 127 QLKHLGMDIDPDTPLKYLSIGQWQMVEIAKALARNAKIIAFDEPTSSLSAREIDNLFRVI 186 L L + D + LSIG QMVEIAK L+ +K+I DEPT +L+ E ++LFRVI Sbjct: 125 LLAKLNLRFKSDKLVGDLSIGDQQMVEIAKVLSFESKVIIMDEPTDALTDTETESLFRVI 184 Query: 187 RELRKEGRVILYVSHRMEEIFALSDAITVFKDGRYVKTFTDMQQVDHDALVQAMVGRDIG 246 REL+ +GR I+Y+SHRM+EIF + D +TVF+DG+++ ++ + D+L++ MVGR + Sbjct: 185 RELKSQGRGIVYISHRMKEIFEICDDVTVFRDGQFIAE-REVASLTEDSLIEMMVGRKLE 243 Query: 247 DIYGWQPRSYGEERLRLDAVKAPGVRTPISLAVRSGEIVGLFGLVGAGRSELMKGMFGGT 306 D Y ++ G+ RL++D + PGV +S +R GEI+G+ GL+GAGR+ELMK ++G Sbjct: 244 DQYPHLDKAPGDIRLKVDNLCGPGVND-VSFTLRKGEILGVSGLMGAGRTELMKVLYGAL 302 Query: 307 QITAGQVYIDQQPIDIRKPSHAIAAGMMLCPEDRKAEGIIPVHSVRDNINISARRKHVLG 366 T+G V +D + R P +A G++ EDRK +G++ SV++N++++A R Sbjct: 303 PRTSGYVTLDGHEVVTRSPQDGLANGIVYISEDRKRDGLVLGMSVKENMSLTALRYFSRA 362 Query: 367 GCVINNGWEENNADHHIRSLNIKTPGAEQLIMNLSGGNQQKAILGRWLSEEMKVILLDEP 426 G + + E+ IR N+KTP EQ I LSGGNQQK + R L KV++LDEP Sbjct: 363 GGSLKHADEQQAVSDFIRLFNVKTPSMEQAIGLLSGGNQQKVAIARGLMTRPKVLILDEP 422 Query: 427 TRGIDVGAKHEIYNVIYALAAQGVAVLFASSDLPEVLGVADRIVVMREGEIAGELLHEQA 486 TRG+DVGAK EIY +I A G++++ SS++PEVLG++DRI+VM EG ++GE EQA Sbjct: 423 TRGVDVGAKKEIYQLINQFKADGLSIILVSSEMPEVLGMSDRIIVMHEGHLSGEFTREQA 482 Query: 487 DERQALSLAMPKVSQ 501 + ++ A+ K+++ Sbjct: 483 TQEVLMAAAVGKLNR 497 Lambda K H 0.319 0.136 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 689 Number of extensions: 35 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 504 Length of database: 501 Length adjustment: 34 Effective length of query: 470 Effective length of database: 467 Effective search space: 219490 Effective search space used: 219490 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory