Align L-arabonate dehydratase (EC 4.2.1.25) (characterized)
to candidate 1937120 b3771 dihydroxy-acid dehydratase (NCBI)
Query= reanno::WCS417:GFF2156 (578 letters) >FitnessBrowser__Keio:1937120 Length = 616 Score = 222 bits (565), Expect = 4e-62 Identities = 175/574 (30%), Positives = 275/574 (47%), Gaps = 56/574 (9%) Query: 6 PGLRSAQWFGTADKNGFMYRSWMKNQGIADHQFHGKPIIGICNTWSELTPCNAHFRQIAE 65 P RSA T +N R+ + G+ D F GKPII + N++++ P + H R + + Sbjct: 2 PKYRSATT--THGRNMAGARALWRATGMTDADF-GKPIIAVVNSFTQFVPGHVHLRDLGK 58 Query: 66 HVKRGVIEAGGFPVEFPVFSNGES-NLRPTAML----TRNLASMDVEEAIRGNPIDGVVL 120 V + AGG EF + + + ML +R L + VE + + D +V Sbjct: 59 LVAEQIEAAGGVAKEFNTIAVDDGIAMGHGGMLYSLPSRELIADSVEYMVNAHCADAMVC 118 Query: 121 LTGCDKTTPALLMGAASCDVPAIVVTGGPMLNGKHKGQDIGSGTVVWQLSEQVKAGTITL 180 ++ CDK TP +LM + ++P I V+GGPM GK K D + Q ++ Sbjct: 119 ISNCDKITPGMLMASLRLNIPVIFVSGGPMEAGKTKLSDQIIKLDLVDAMIQGADPKVSD 178 Query: 181 DDFLAAEGGMSRSAGTCNTMGTASTMACMAEALGTSLPHNAAIPAVDARRYVLAHMSGMR 240 E + G+C+ M TA++M C+ EALG S P N ++ A A R L +G R Sbjct: 179 SQSDQVERSACPTCGSCSGMFTANSMNCLTEALGLSQPGNGSLLATHADRKQLFLNAGKR 238 Query: 241 AVEMVR-------EDLKLSKILTKEAFENAIRVNAAIGGSTNAVIHLKAIAGRIGVELDL 293 VE+ + E I +K AFENA+ ++ A+GGSTN V+HL A A ++ + Sbjct: 239 IVELTKRYYEQNDESALPRNIASKAAFENAMTLDIAMGGSTNTVLHLLAAAQEAEIDFTM 298 Query: 294 DDWTRIGRGMPTIVDLQPS-GRFLMEEFYYAGGLPAVLRRLGEANLIPHPNALTVNGKSL 352 D ++ R +P + + PS ++ ME+ + AGG+ +L L A L+ + + V G +L Sbjct: 299 SDIDKLSRKVPQLCKVAPSTQKYHMEDVHRAGGVIGILGELDRAGLL-NRDVKNVLGLTL 357 Query: 353 GEN--------TQDSPI----------------YGQD------------EVIRTLDNPIR 376 + TQD + + QD IR+L++ Sbjct: 358 PQTLEQYDVMLTQDDAVKNMFRAGPAGIRTTQAFSQDCRWDTLDDDRANGCIRSLEHAYS 417 Query: 377 ADGGICVLRGNLAPLGAVLKPSAASPALMQHRGRAVVFENFDMYKARINDPELDVDANSI 436 DGG+ VL GN A G ++K + ++++ G A V+E+ D I + V A + Sbjct: 418 KDGGLAVLYGNFAENGCIVKTAGVDDSILKFTGPAKVYESQDDAVEAILGGK--VVAGDV 475 Query: 437 LVMKNCGPKGYPGMAEVGNMGLPAKLLAQGVTDMVRISDARMSGTAYGTVVLHVAPEAAA 496 +V++ GPKG PGM E+ K + G I+D R SG G + HV+PEAA+ Sbjct: 476 VVIRYEGPKGGPGMQEMLYPTSFLKSMGLGKA-CALITDGRFSGGTSGLSIGHVSPEAAS 534 Query: 497 GGPLATVKEGDWIELDCANGRLHLDIPDAELAAR 530 GG + +++GD I +D N + L + DAELAAR Sbjct: 535 GGSIGLIEDGDLIAIDIPNRGIQLQVSDAELAAR 568 Lambda K H 0.319 0.136 0.413 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 871 Number of extensions: 41 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 578 Length of database: 616 Length adjustment: 37 Effective length of query: 541 Effective length of database: 579 Effective search space: 313239 Effective search space used: 313239 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory