Align Xylose/arabinose import ATP-binding protein XylG; EC 7.5.2.13 (characterized, see rationale)
to candidate 17809 b3749 fused D-ribose transporter subunits of ABC superfamily: ATP-binding components (NCBI)
Query= uniprot:P0DTT6 (251 letters) >FitnessBrowser__Keio:17809 Length = 501 Score = 164 bits (415), Expect = 3e-45 Identities = 88/238 (36%), Positives = 144/238 (60%), Gaps = 2/238 (0%) Query: 1 MSDLLEIRDVHKSFGAVKALDGVSMEINKGEVVALLGDNGAGKSTLIKIISGYHKPDRGD 60 M LL+++ + K+F VKAL G ++ + G V+AL+G+NGAGKST++K+++G + D G Sbjct: 1 MEALLQLKGIDKAFPGVKALSGAALNVYPGRVMALVGENGAGKSTMMKVLTGIYTRDAGT 60 Query: 61 LVFEGKKVIFNSPNDARSLGIETIYQDLALIPDLPIYYNIFLAREVTNKI-FLNKKKMME 119 L++ GK+ F P ++ GI I+Q+L LIP L I NIFL RE N+ ++ K M Sbjct: 61 LLWLGKETTFTGPKSSQEAGIGIIHQELNLIPQLTIAENIFLGREFVNRFGKIDWKTMYA 120 Query: 120 ESKKLLDSLQIRIPDINMKVENLSGGQRQAVAVARAVYFSAKMILMDEPTAALSVVEARK 179 E+ KLL L +R + V +LS G +Q V +A+ + F +K+I+MDEPT AL+ E Sbjct: 121 EADKLLAKLNLRFKSDKL-VGDLSIGDQQMVEIAKVLSFESKVIIMDEPTDALTDTETES 179 Query: 180 VLELARNLKKKGLGVLIITHNIIQGYEVADRIYVLDRGKIIFHKKKEETNVEEITEVM 237 + + R LK +G G++ I+H + + +E+ D + V G+ I ++ + + E+M Sbjct: 180 LFRVIRELKSQGRGIVYISHRMKEIFEICDDVTVFRDGQFIAEREVASLTEDSLIEMM 237 Score = 96.7 bits (239), Expect = 8e-25 Identities = 62/233 (26%), Positives = 119/233 (51%), Gaps = 10/233 (4%) Query: 20 LDGVSMEINKGEVVALLGDNGAGKSTLIKIISGYHKPDRGDLVFEGKKVIFNSPNDARSL 79 ++ VS + KGE++ + G GAG++ L+K++ G G + +G +V+ SP D + Sbjct: 268 VNDVSFTLRKGEILGVSGLMGAGRTELMKVLYGALPRTSGYVTLDGHEVVTRSPQDGLAN 327 Query: 80 GIETIYQDL---ALIPDLPIYYNIFLAREVTNKIFLNKKKMMEESKKLLDSLQ---IRIP 133 GI I +D L+ + + N+ L K +E + + D ++ ++ P Sbjct: 328 GIVYISEDRKRDGLVLGMSVKENMSLTALRYFSRAGGSLKHADEQQAVSDFIRLFNVKTP 387 Query: 134 DINMKVENLSGGQRQAVAVARAVYFSAKMILMDEPTAALSVVEARKVLELARNLKKKGLG 193 + + LSGG +Q VA+AR + K++++DEPT + V +++ +L K GL Sbjct: 388 SMEQAIGLLSGGNQQKVAIARGLMTRPKVLILDEPTRGVDVGAKKEIYQLINQFKADGLS 447 Query: 194 VLIITHNIIQGYEVADRIYVLDRGKIIFHKKKEETNVEEITEVMTSFALGKVN 246 +++++ + + ++DRI V+ G H E T + EV+ + A+GK+N Sbjct: 448 IILVSSEMPEVLGMSDRIIVMHEG----HLSGEFTREQATQEVLMAAAVGKLN 496 Lambda K H 0.318 0.137 0.371 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 264 Number of extensions: 17 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 251 Length of database: 501 Length adjustment: 29 Effective length of query: 222 Effective length of database: 472 Effective search space: 104784 Effective search space used: 104784 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory