Align 4-guanidinobutyraldehyde dehydrogenase (EC 1.2.1.54) (characterized)
to candidate 17649 b3588 aldehyde dehydrogenase B (lactaldehyde dehydrogenase) (VIMSS)
Query= metacyc::MONOMER-11560 (497 letters) >FitnessBrowser__Keio:17649 Length = 512 Score = 364 bits (934), Expect = e-105 Identities = 207/485 (42%), Positives = 292/485 (60%), Gaps = 14/485 (2%) Query: 16 LKIEGRA--FINGEYTDAVSGETFECLSPVDGRFLAKVASCDLADANRAVENARATFNSG 73 LK++ R FI GE+ GE ++ L+PV G+ L +VAS D + A++ A + Sbjct: 19 LKLKARYDNFIGGEWVAPADGEYYQNLTPVTGQLLCEVASSGKRDIDLALDAAHKVKDK- 77 Query: 74 VWSQLAPAKRKAKLIRFADLLRKNVEELALLETLDMGKPIGDSSSIDIPGAAQAIHWTAE 133 W+ + R A L + AD + +N+E LA ET D GKPI ++S+ D+P A + A Sbjct: 78 -WAHTSVQDRAAILFKIADRMEQNLELLATAETWDNGKPIRETSAADVPLAIDHFRYFAS 136 Query: 134 AIDKVYDEVAPTPHDQLGLVTREPVGVVGAIVPWNFPLLMACWKLGPALATGNSVVLKPS 193 I ++ + + EP+GVVG I+PWNFPLLMA WK+ PALA GN VVLKP+ Sbjct: 137 CIRAQEGGISEVDSETVAYHFHEPLGVVGQIIPWNFPLLMASWKMAPALAAGNCVVLKPA 196 Query: 194 EKSPLTAIRIAQLAIEAGIPAGVLNVLPGYGHTVGKALALHMDVDTLVFTGSTKIAKQLM 253 +PL+ + + ++ + +P GV+NV+ G G +G+ LA + + FTGST++ +Q+M Sbjct: 197 RLTPLSVLLLMEIVGDL-LPPGVVNVVNGAGGVIGEYLATSKRIAKVAFTGSTEVGQQIM 255 Query: 254 VYAGESNMKRIWLEAGGKSPNIVFADAPDLQAA----AEAAASAIAFNQGEVCTAGSRLL 309 YA + N+ + LE GGKSPNI FAD D + A A + AFNQGEVCT SR L Sbjct: 256 QYATQ-NIIPVTLELGGKSPNIFFADVMDEEDAFFDKALEGFALFAFNQGEVCTCPSRAL 314 Query: 310 VERSIKDKFLPMVVEALKGWKPGNPLDPQTTVGALVDTQQMNTVLSYIEAGHKDGAKLLA 369 V+ SI ++F+ + ++ + GNPLD T +GA V Q+ T+L+YI+ G K+GA +L Sbjct: 315 VQESIYERFMERAIRRVESIRSGNPLDSVTQMGAQVSHGQLETILNYIDIGKKEGADVLT 374 Query: 370 GGKRTL---EETGGTYVEPTIFDGVTNAMRIAQEEIFGPVLSVIAFDTAEEAVAIANDTP 426 GG+R L E G Y+EPTI G N MR+ QEEIFGPVL+V F T EEA+ +ANDT Sbjct: 375 GGRRKLLEGELKDGYYLEPTILFGQNN-MRVFQEEIFGPVLAVTTFKTMEEALELANDTQ 433 Query: 427 YGLAAGIWTSDISKAHKTARAVRAGSVWVNQYDGGDMTAPFGGFKQSGNGRDKSLHALEK 486 YGL AG+W+ + + A+K R ++AG VW N Y A FGG+KQSG GR+ LE Sbjct: 434 YGLGAGVWSRNGNLAYKMGRGIQAGRVWTNCYHAYPAHAAFGGYKQSGIGRETHKMMLEH 493 Query: 487 YTELK 491 Y + K Sbjct: 494 YQQTK 498 Lambda K H 0.316 0.132 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 631 Number of extensions: 34 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 497 Length of database: 512 Length adjustment: 34 Effective length of query: 463 Effective length of database: 478 Effective search space: 221314 Effective search space used: 221314 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory