Align 6-P-β-glucosidase 2 (AscB;b2716) (EC 3.2.1.86) (characterized)
to candidate 16800 b2716 cryptic 6-phospho-beta-glucosidase (NCBI)
Query= CAZy::AAA69226.1 (476 letters) >lcl|FitnessBrowser__Keio:16800 b2716 cryptic 6-phospho-beta-glucosidase (NCBI) Length = 474 Score = 981 bits (2536), Expect = 0.0 Identities = 474/474 (100%), Positives = 474/474 (100%) Query: 3 MSVFPESFLWGGALAANQSEGAFREGDKGLTTVDMIPHGEHRMAVKLGLEKRFQLRDDEF 62 MSVFPESFLWGGALAANQSEGAFREGDKGLTTVDMIPHGEHRMAVKLGLEKRFQLRDDEF Sbjct: 1 MSVFPESFLWGGALAANQSEGAFREGDKGLTTVDMIPHGEHRMAVKLGLEKRFQLRDDEF 60 Query: 63 YPSHEATDFYHRYKEDIALMAEMGFKVFRTSIAWSRLFPQGDEITPNQQGIAFYRSVFEE 122 YPSHEATDFYHRYKEDIALMAEMGFKVFRTSIAWSRLFPQGDEITPNQQGIAFYRSVFEE Sbjct: 61 YPSHEATDFYHRYKEDIALMAEMGFKVFRTSIAWSRLFPQGDEITPNQQGIAFYRSVFEE 120 Query: 123 CKKYGIEPLVTLCHFDVPMHLVTEYGSWRNRKLVEFFSRYARTCFEAFDGLVKYWLTFNE 182 CKKYGIEPLVTLCHFDVPMHLVTEYGSWRNRKLVEFFSRYARTCFEAFDGLVKYWLTFNE Sbjct: 121 CKKYGIEPLVTLCHFDVPMHLVTEYGSWRNRKLVEFFSRYARTCFEAFDGLVKYWLTFNE 180 Query: 183 INIMLHSPFSGAGLVFEEGENQDQVKYQAAHHQLVASALATKIAHEVNPQNQVGCMLAGG 242 INIMLHSPFSGAGLVFEEGENQDQVKYQAAHHQLVASALATKIAHEVNPQNQVGCMLAGG Sbjct: 181 INIMLHSPFSGAGLVFEEGENQDQVKYQAAHHQLVASALATKIAHEVNPQNQVGCMLAGG 240 Query: 243 NFYPYSCKPEDVWAALEKDRENLFFIDVQARGTYPAYSARVFREKGVTINKAPGDDEILK 302 NFYPYSCKPEDVWAALEKDRENLFFIDVQARGTYPAYSARVFREKGVTINKAPGDDEILK Sbjct: 241 NFYPYSCKPEDVWAALEKDRENLFFIDVQARGTYPAYSARVFREKGVTINKAPGDDEILK 300 Query: 303 NTVDFVSFSYYASRCASAEMNANNSSAANVVKSLRNPYLQVSDWGWGIDPLGLRITMNMM 362 NTVDFVSFSYYASRCASAEMNANNSSAANVVKSLRNPYLQVSDWGWGIDPLGLRITMNMM Sbjct: 301 NTVDFVSFSYYASRCASAEMNANNSSAANVVKSLRNPYLQVSDWGWGIDPLGLRITMNMM 360 Query: 363 YDRYQKPLFLVENGLGAKDEFAANGEINDDYRISYLREHIRAMGEAIADGIPLMGYTTWG 422 YDRYQKPLFLVENGLGAKDEFAANGEINDDYRISYLREHIRAMGEAIADGIPLMGYTTWG Sbjct: 361 YDRYQKPLFLVENGLGAKDEFAANGEINDDYRISYLREHIRAMGEAIADGIPLMGYTTWG 420 Query: 423 CIDLVSASTGEMSKRYGFVFVDRDDAGNGTLTRTRKKSFWWYKKVIASNGEDLE 476 CIDLVSASTGEMSKRYGFVFVDRDDAGNGTLTRTRKKSFWWYKKVIASNGEDLE Sbjct: 421 CIDLVSASTGEMSKRYGFVFVDRDDAGNGTLTRTRKKSFWWYKKVIASNGEDLE 474 Lambda K H 0.321 0.136 0.423 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 964 Number of extensions: 25 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 476 Length of database: 474 Length adjustment: 33 Effective length of query: 443 Effective length of database: 441 Effective search space: 195363 Effective search space used: 195363 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory