Align 6-P-β-glucosidase (BglB;b3721) (EC 3.2.1.86) (characterized)
to candidate 17781 b3721 cryptic phospho-beta-glucosidase B (NCBI)
Query= CAZy::AAC76744.1 (470 letters) >lcl|FitnessBrowser__Keio:17781 b3721 cryptic phospho-beta-glucosidase B (NCBI) Length = 470 Score = 971 bits (2511), Expect = 0.0 Identities = 470/470 (100%), Positives = 470/470 (100%) Query: 1 MKAFPETFLWGGATAANQVEGAWQEDGKGISTSDLQPHGVMGKMEPRILGKENIKDVAID 60 MKAFPETFLWGGATAANQVEGAWQEDGKGISTSDLQPHGVMGKMEPRILGKENIKDVAID Sbjct: 1 MKAFPETFLWGGATAANQVEGAWQEDGKGISTSDLQPHGVMGKMEPRILGKENIKDVAID 60 Query: 61 FYHRYPEDIALFAEMGFTCLRISIAWARIFPQGDEVEPNEAGLAFYDRLFDEMAQAGIKP 120 FYHRYPEDIALFAEMGFTCLRISIAWARIFPQGDEVEPNEAGLAFYDRLFDEMAQAGIKP Sbjct: 61 FYHRYPEDIALFAEMGFTCLRISIAWARIFPQGDEVEPNEAGLAFYDRLFDEMAQAGIKP 120 Query: 121 LVTLSHYEMPYGLVKNYGGWANRAVIDHFEHYARTVFTRYQHKVALWLTFNEINMSLHAP 180 LVTLSHYEMPYGLVKNYGGWANRAVIDHFEHYARTVFTRYQHKVALWLTFNEINMSLHAP Sbjct: 121 LVTLSHYEMPYGLVKNYGGWANRAVIDHFEHYARTVFTRYQHKVALWLTFNEINMSLHAP 180 Query: 181 FTGVGLAEESGEAEVYQAIHHQLVASARAVKACHSLLPEAKIGNMLLGGLVYPLTCQPQD 240 FTGVGLAEESGEAEVYQAIHHQLVASARAVKACHSLLPEAKIGNMLLGGLVYPLTCQPQD Sbjct: 181 FTGVGLAEESGEAEVYQAIHHQLVASARAVKACHSLLPEAKIGNMLLGGLVYPLTCQPQD 240 Query: 241 MLQAMEENRRWMFFGDVQARGQYPGYMQRFFRDHNITIEMTESDAEDLKHTVDFISFSYY 300 MLQAMEENRRWMFFGDVQARGQYPGYMQRFFRDHNITIEMTESDAEDLKHTVDFISFSYY Sbjct: 241 MLQAMEENRRWMFFGDVQARGQYPGYMQRFFRDHNITIEMTESDAEDLKHTVDFISFSYY 300 Query: 301 MTGCVSHDESINKNAQGNILNMIPNPHLKSSEWGWQIDPVGLRVLLNTLWDRYQKPLFIV 360 MTGCVSHDESINKNAQGNILNMIPNPHLKSSEWGWQIDPVGLRVLLNTLWDRYQKPLFIV Sbjct: 301 MTGCVSHDESINKNAQGNILNMIPNPHLKSSEWGWQIDPVGLRVLLNTLWDRYQKPLFIV 360 Query: 361 ENGLGAKDSVEADGSIQDDYRIAYLNDHLVQVNEAIADGVDIMGYTSWGPIDLVSASHSQ 420 ENGLGAKDSVEADGSIQDDYRIAYLNDHLVQVNEAIADGVDIMGYTSWGPIDLVSASHSQ Sbjct: 361 ENGLGAKDSVEADGSIQDDYRIAYLNDHLVQVNEAIADGVDIMGYTSWGPIDLVSASHSQ 420 Query: 421 MSKRYGFIYVDRDDNGEGSLTRTRKKSFGWYAEVIKTRGLSLKKITIKAP 470 MSKRYGFIYVDRDDNGEGSLTRTRKKSFGWYAEVIKTRGLSLKKITIKAP Sbjct: 421 MSKRYGFIYVDRDDNGEGSLTRTRKKSFGWYAEVIKTRGLSLKKITIKAP 470 Lambda K H 0.320 0.137 0.423 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 932 Number of extensions: 21 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 470 Length of database: 470 Length adjustment: 33 Effective length of query: 437 Effective length of database: 437 Effective search space: 190969 Effective search space used: 190969 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory