Align N-succinylglutamate 5-semialdehyde dehydrogenase 1; EC 1.2.1.71; Succinylglutamic semialdehyde dehydrogenase 1; SGSD 1 (uncharacterized)
to candidate 15420 b1300 gamma-Glu-gamma-aminobutyraldehyde dehydrogenase, NAD(P)H-dependent (NCBI)
Query= curated2:Q9AAL5 (472 letters) >FitnessBrowser__Keio:15420 Length = 495 Score = 202 bits (513), Expect = 3e-56 Identities = 152/446 (34%), Positives = 220/446 (49%), Gaps = 12/446 (2%) Query: 10 DPYTGEAIADFAVNDARSIDAACHSARAAF--AEWAMTPLAERRAIALRFAETVRARREE 67 DP T +A A + ID A +AR F +W+++ A+R+A+ + A+ + A EE Sbjct: 41 DPVTQAPLAKIARGKSVDIDRAMSAARGVFERGDWSLSSPAKRKAVLNKLADLMEAHAEE 100 Query: 68 IATLIARETGKPMWEALTEADSVAAK-VAISIRAQDERAGERSEPMADATARLAHRPHGV 126 +A L +TGKP+ +L + AA+ + A D+ GE + + A + P GV Sbjct: 101 LALLETLDTGKPIRHSLRDDIPGAARAIRWYAEAIDKVYGEVATTSSHELAMIVREPVGV 160 Query: 127 LAVIGPFNFPMHLANGHIVPALLAGNAVVFKPSEKTPACGQLMGELWRAAGLPDHVLTIV 186 +A I P+NFP+ L + PAL AGN+V+ KPSEK+P + L + AGLPD VL +V Sbjct: 161 IAAIVPWNFPLLLTCWKLGPALAAGNSVILKPSEKSPLSAIRLAGLAKEAGLPDGVLNVV 220 Query: 187 IG-GGEAGEALVRHEALDGVLFTGGVQAGRAIHRALADAPHKILALELGG-NAPLVVWDV 244 G G EAG+AL RH +D + FTG + G+ + + D+ K + LE GG +A +V D Sbjct: 221 TGFGHEAGQALSRHNDIDAIAFTGSTRTGKQLLKDAGDSNMKRVWLEAGGKSANIVFADC 280 Query: 245 ADIEAAAHLIVQSAYVTAGQRCTCARRLILPEGARGDALLEALTMLMDRLVIGGPFQSPA 304 D++ AA + GQ C RL+L E D L L G P PA Sbjct: 281 PDLQQAASATAAGIFYNQGQVCIAGTRLLLEESI-ADEFLALLKQQAQNWQPGHPL-DPA 338 Query: 305 PFMGPVIDAHAAAQVLAAQDRMTADGGRPLRLAAVREARSALLSPGLIELTD--APLRDE 362 MG +ID A V + + G L L +A + P + D A L E Sbjct: 339 TTMGTLIDCAHADSVHSFIREGESKG--QLLLDGRNAGLAAAIGPTIFVDVDPNASLSRE 396 Query: 363 EIFGPLLQVRRAADFDAALALANATRFGLAAGLISDDEALYRRFWTSVRAGIVNWNRPTT 422 EIFGP+L V R + AL LAN +++GL A + + D + R ++AG V N Sbjct: 397 EIFGPVLVVTRFTSEEQALQLANDSQYGLGAAVWTRDLSRAHRMSRRLKAGSVFVNNYND 456 Query: 423 GASSAAPFGGVGGSGNHRPSAYYAAD 448 G PFGG SGN R + +A + Sbjct: 457 G-DMTVPFGGYKQSGNGRDKSLHALE 481 Lambda K H 0.320 0.135 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 544 Number of extensions: 24 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 472 Length of database: 495 Length adjustment: 34 Effective length of query: 438 Effective length of database: 461 Effective search space: 201918 Effective search space used: 201918 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory