GapMind for catabolism of small carbon sources

 

Aligments for a candidate for ald-dh-CoA in Escherichia coli BW25113

Align aldehyde-alcohol dehydrogenase; EC 1.1.1.1; EC 1.2.1.10 (characterized)
to candidate 15361 b1241 fused acetaldehyde-CoA dehydrogenase/iron-dependent alcohol dehydrogenase/pyruvate-formate lyase deactivase (NCBI)

Query= CharProtDB::CH_024820
         (891 letters)



>lcl|FitnessBrowser__Keio:15361 b1241 fused acetaldehyde-CoA
           dehydrogenase/iron-dependent alcohol
           dehydrogenase/pyruvate-formate lyase deactivase (NCBI)
          Length = 891

 Score = 1749 bits (4530), Expect = 0.0
 Identities = 891/891 (100%), Positives = 891/891 (100%)

Query: 1   MAVTNVAELNALVERVKKAQREYASFTQEQVDKIFRAAALAAADARIPLAKMAVAESGMG 60
           MAVTNVAELNALVERVKKAQREYASFTQEQVDKIFRAAALAAADARIPLAKMAVAESGMG
Sbjct: 1   MAVTNVAELNALVERVKKAQREYASFTQEQVDKIFRAAALAAADARIPLAKMAVAESGMG 60

Query: 61  IVEDKVIKNHFASEYIYNAYKDEKTCGVLSEDDTFGTITIAEPIGIICGIVPTTNPTSTA 120
           IVEDKVIKNHFASEYIYNAYKDEKTCGVLSEDDTFGTITIAEPIGIICGIVPTTNPTSTA
Sbjct: 61  IVEDKVIKNHFASEYIYNAYKDEKTCGVLSEDDTFGTITIAEPIGIICGIVPTTNPTSTA 120

Query: 121 IFKSLISLKTRNAIIFSPHPRAKDATNKAADIVLQAAIAAGAPKDLIGWIDQPSVELSNA 180
           IFKSLISLKTRNAIIFSPHPRAKDATNKAADIVLQAAIAAGAPKDLIGWIDQPSVELSNA
Sbjct: 121 IFKSLISLKTRNAIIFSPHPRAKDATNKAADIVLQAAIAAGAPKDLIGWIDQPSVELSNA 180

Query: 181 LMHHPDINLILATGGPGMVKAAYSSGKPAIGVGAGNTPVVIDETADIKRAVASVLMSKTF 240
           LMHHPDINLILATGGPGMVKAAYSSGKPAIGVGAGNTPVVIDETADIKRAVASVLMSKTF
Sbjct: 181 LMHHPDINLILATGGPGMVKAAYSSGKPAIGVGAGNTPVVIDETADIKRAVASVLMSKTF 240

Query: 241 DNGVICASEQSVVVVDSVYDAVRERFATHGGYLLQGKELKAVQDVILKNGALNAAIVGQP 300
           DNGVICASEQSVVVVDSVYDAVRERFATHGGYLLQGKELKAVQDVILKNGALNAAIVGQP
Sbjct: 241 DNGVICASEQSVVVVDSVYDAVRERFATHGGYLLQGKELKAVQDVILKNGALNAAIVGQP 300

Query: 301 AYKIAELAGFSVPENTKILIGEVTVVDESEPFAHEKLSPTLAMYRAKDFEDAVEKAEKLV 360
           AYKIAELAGFSVPENTKILIGEVTVVDESEPFAHEKLSPTLAMYRAKDFEDAVEKAEKLV
Sbjct: 301 AYKIAELAGFSVPENTKILIGEVTVVDESEPFAHEKLSPTLAMYRAKDFEDAVEKAEKLV 360

Query: 361 AMGGIGHTSCLYTDQDNQPARVSYFGQKMKTARILINTPASQGGIGDLYNFKLAPSLTLG 420
           AMGGIGHTSCLYTDQDNQPARVSYFGQKMKTARILINTPASQGGIGDLYNFKLAPSLTLG
Sbjct: 361 AMGGIGHTSCLYTDQDNQPARVSYFGQKMKTARILINTPASQGGIGDLYNFKLAPSLTLG 420

Query: 421 CGSWGGNSISENVGPKHLINKKTVAKRAENMLWHKLPKSIYFRRGSLPIALDEVITDGHK 480
           CGSWGGNSISENVGPKHLINKKTVAKRAENMLWHKLPKSIYFRRGSLPIALDEVITDGHK
Sbjct: 421 CGSWGGNSISENVGPKHLINKKTVAKRAENMLWHKLPKSIYFRRGSLPIALDEVITDGHK 480

Query: 481 RALIVTDRFLFNNGYADQITSVLKAAGVETEVFFEVEADPTLSIVRKGAELANSFKPDVI 540
           RALIVTDRFLFNNGYADQITSVLKAAGVETEVFFEVEADPTLSIVRKGAELANSFKPDVI
Sbjct: 481 RALIVTDRFLFNNGYADQITSVLKAAGVETEVFFEVEADPTLSIVRKGAELANSFKPDVI 540

Query: 541 IALGGGSPMDAAKIMWVMYEHPETHFEELALRFMDIRKRIYKFPKMGVKAKMIAVTTTSG 600
           IALGGGSPMDAAKIMWVMYEHPETHFEELALRFMDIRKRIYKFPKMGVKAKMIAVTTTSG
Sbjct: 541 IALGGGSPMDAAKIMWVMYEHPETHFEELALRFMDIRKRIYKFPKMGVKAKMIAVTTTSG 600

Query: 601 TGSEVTPFAVVTDDATGQKYPLADYALTPDMAIVDANLVMDMPKSLCAFGGLDAVTHAME 660
           TGSEVTPFAVVTDDATGQKYPLADYALTPDMAIVDANLVMDMPKSLCAFGGLDAVTHAME
Sbjct: 601 TGSEVTPFAVVTDDATGQKYPLADYALTPDMAIVDANLVMDMPKSLCAFGGLDAVTHAME 660

Query: 661 AYVSVLASEFSDGQALQALKLLKEYLPASYHEGSKNPVARERVHSAATIAGIAFANAFLG 720
           AYVSVLASEFSDGQALQALKLLKEYLPASYHEGSKNPVARERVHSAATIAGIAFANAFLG
Sbjct: 661 AYVSVLASEFSDGQALQALKLLKEYLPASYHEGSKNPVARERVHSAATIAGIAFANAFLG 720

Query: 721 VCHSMAHKLGSQFHIPHGLANALLICNVIRYNANDNPTKQTAFSQYDRPQARRRYAEIAD 780
           VCHSMAHKLGSQFHIPHGLANALLICNVIRYNANDNPTKQTAFSQYDRPQARRRYAEIAD
Sbjct: 721 VCHSMAHKLGSQFHIPHGLANALLICNVIRYNANDNPTKQTAFSQYDRPQARRRYAEIAD 780

Query: 781 HLGLSAPGDRTAAKIEKLLAWLETLKAELGIPKSIREAGVQEADFLANVDKLSEDAFDDQ 840
           HLGLSAPGDRTAAKIEKLLAWLETLKAELGIPKSIREAGVQEADFLANVDKLSEDAFDDQ
Sbjct: 781 HLGLSAPGDRTAAKIEKLLAWLETLKAELGIPKSIREAGVQEADFLANVDKLSEDAFDDQ 840

Query: 841 CTGANPRYPLISELKQILLDTYYGRDYVEGETAAKKEAAPAKAEKKAKKSA 891
           CTGANPRYPLISELKQILLDTYYGRDYVEGETAAKKEAAPAKAEKKAKKSA
Sbjct: 841 CTGANPRYPLISELKQILLDTYYGRDYVEGETAAKKEAAPAKAEKKAKKSA 891


Lambda     K      H
   0.317    0.132    0.378 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2160
Number of extensions: 66
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 891
Length of database: 891
Length adjustment: 43
Effective length of query: 848
Effective length of database: 848
Effective search space:   719104
Effective search space used:   719104
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory