Align The fructose porter, FruA (fructose-1-P forming IIABC) (Delobbe et al. 1975) FruA is 39% identical to 4.A.2.1.1). fructose can be metabolized to Fru-1-P via this system as well as Fru-6-P by another PTS system (characterized)
to candidate 16276 b2167 fused fructose-specific PTS enzymes: IIBcomponent/IIC components (NCBI)
Query= TCDB::P71012 (635 letters) >FitnessBrowser__Keio:16276 Length = 563 Score = 404 bits (1039), Expect = e-117 Identities = 211/473 (44%), Positives = 308/473 (65%), Gaps = 17/473 (3%) Query: 162 AAPAPAGKGKILAVTACPTGIAHTFMAADALKEKAKELGVEIKVETNGSSGIKHKLTAQE 221 A A +G +++AVTACPTG+AHTFMAA+A++ +AK+ G +KVET GS G + +T +E Sbjct: 96 APVAASGPKRVVAVTACPTGVAHTFMAAEAIETEAKKRGWWVKVETRGSVGAGNAITPEE 155 Query: 222 IEDAPAIIVAADKQVEMERFKGKRVLQVPVTAGIRRPQELIEKAMNQDAPIYQGSGGGSA 281 + A +IVAAD +V++ +F GK + + +++ + ++KA+ + P Y+ +G Sbjct: 156 VAAADLVIVAADIEVDLAKFAGKPMYRTSTGLALKKTAQELDKAVAEATP-YEPAGKAQT 214 Query: 282 ASNDDEEAKGKSGSGIGNTFYKHLMSGVSNMLPFVVGGGILVAISFFWGIHSADPNDPSY 341 A+ E K +G+ Y+HL++GVS MLP VV GG+ +A+SF +GI + +P Sbjct: 215 ATT--ESKKESAGA------YRHLLTGVSYMLPMVVAGGLCIALSFAFGIEAF--KEPG- 263 Query: 342 NTFAAALNFIGGDNALKLIVAVLAGFIAMSIADRPGFAPGMVGGFMATQANAGFLGGLIA 401 T AAAL IGG +A L+V VLAG+IA SIADRPG PG++GG +A +GF+GG+IA Sbjct: 264 -TLAAALMQIGGGSAFALMVPVLAGYIAFSIADRPGLTPGLIGGMLAVSTGSGFIGGIIA 322 Query: 402 GFLAGYVVILLKKVFTFIPQSLDGLKPVLIYPLFGIFITGVLMQFVVNTPVAAFMNFLTN 461 GFLAGY+ L+ +PQS++ LKP+LI PL + G+ M +++ PVA + LT+ Sbjct: 323 GFLAGYIAKLISTQLK-LPQSMEALKPILIIPLISSLVVGLAMIYLIGKPVAGILEGLTH 381 Query: 462 WLESLGTGNLVLMGIILGGMMAIDMGGPLNKAAFTFGIAMIDAGNYAPHAAIMAGGMVPP 521 WL+++GT N VL+G ILGGMM DMGGP+NKAA+ FG+ ++ Y P AAIMA GMVPP Sbjct: 382 WLQTMGTANAVLLGAILGGMMCTDMGGPVNKAAYAFGVGLLSTQTYGPMAAIMAAGMVPP 441 Query: 522 LGIALATTIFRNKFTQRDREAGITCYFMGAAFVTEGAIPFAAADPLRVIPAAVVGAAVAG 581 L + LAT + R KF + +E G +G F++EGAIPFAA DP+RV+P +VG A+ G Sbjct: 442 LAMGLATMVARRKFDKAQQEGGKAALVLGLCFISEGAIPFAARDPMRVLPCCIVGGALTG 501 Query: 582 GLTEFFRVTLPAPHGGVFVAFITN--HPML-YLLSIVIGAVVMAIILGIVKKP 631 ++ L APHGG+FV I P+L YL++I+ G +V + +K+P Sbjct: 502 AISMAIGAKLMAPHGGLFVLLIPGAITPVLGYLVAIIAGTLVAGLAYAFLKRP 554 Lambda K H 0.320 0.137 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 831 Number of extensions: 42 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 635 Length of database: 563 Length adjustment: 37 Effective length of query: 598 Effective length of database: 526 Effective search space: 314548 Effective search space used: 314548 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory