Align Arabinose import ATP-binding protein AraG; EC 7.5.2.12 (characterized, see rationale)
to candidate 17809 b3749 fused D-ribose transporter subunits of ABC superfamily: ATP-binding components (NCBI)
Query= uniprot:B2SYR5 (512 letters) >FitnessBrowser__Keio:17809 Length = 501 Score = 406 bits (1043), Expect = e-117 Identities = 216/495 (43%), Positives = 318/495 (64%), Gaps = 4/495 (0%) Query: 1 MSATLRFDNIGKVFPGVRALDGVSFDVNVGQVHGLMGENGAGKSTLLKILGGEYQPDSGR 60 M A L+ I K FPGV+AL G + +V G+V L+GENGAGKST++K+L G Y D+G Sbjct: 1 MEALLQLKGIDKAFPGVKALSGAALNVYPGRVMALVGENGAGKSTMMKVLTGIYTRDAGT 60 Query: 61 VMIDGNEVRFTSAASSIAAGIAVIHQELQYVPDLTVAENLLLG-QLPNSLGWVNKREAKR 119 ++ G E FT SS AGI +IHQEL +P LT+AEN+ LG + N G ++ + Sbjct: 61 LLWLGKETTFTGPKSSQEAGIGIIHQELNLIPQLTIAENIFLGREFVNRFGKIDWKTMYA 120 Query: 120 FVRERLEAMGVALDPNAKLRKLSIAQRQMVEICKALLRNARVIALDEPTSSLSHRETEVL 179 + L + + + + LSI +QMVEI K L ++VI +DEPT +L+ ETE L Sbjct: 121 EADKLLAKLNLRFKSDKLVGDLSIGDQQMVEIAKVLSFESKVIIMDEPTDALTDTETESL 180 Query: 180 FKLVRDLRADNRAMIYISHRMDEIYELCDACTIFRDGRKIASHPTLEGVTRDTIVSEMVG 239 F+++R+L++ R ++YISHRM EI+E+CD T+FRDG+ IA + +T D+++ MVG Sbjct: 181 FRVIRELKSQGRGIVYISHRMKEIFEICDDVTVFRDGQFIAERE-VASLTEDSLIEMMVG 239 Query: 240 REISDIYNYSARPLGEVRFAAKGIEGHALAQPASFEVRRGEIVGFFGLVGAGRSELMHLV 299 R++ D Y + + G++R + G + SF +R+GEI+G GL+GAGR+ELM ++ Sbjct: 240 RKLEDQYPHLDKAPGDIRLKVDNLCGPGV-NDVSFTLRKGEILGVSGLMGAGRTELMKVL 298 Query: 300 YGADHKKGGELLLDGKPIKVRSAGEAIRHGIVLCPEDRKEEGIVAMATVSENINISCRRH 359 YGA + G + LDG + RS + + +GIV EDRK +G+V +V EN++++ R+ Sbjct: 299 YGALPRTSGYVTLDGHEVVTRSPQDGLANGIVYISEDRKRDGLVLGMSVKENMSLTALRY 358 Query: 360 YLRVGMFLDRKKEAETADRFIKLLKIKTPSRRQKIRFLSGGNQQKAILSRWLAEPDLKVV 419 + R G L E + FI+L +KTPS Q I LSGGNQQK ++R L KV+ Sbjct: 359 FSRAGGSLKHADEQQAVSDFIRLFNVKTPSMEQAIGLLSGGNQQKVAIARGLMTRP-KVL 417 Query: 420 ILDEPTRGIDVGAKHEIYNVIYQLAERGCAIVMISSELPEVLGVSDRIVVMRQGRISGEL 479 ILDEPTRG+DVGAK EIY +I Q G +I+++SSE+PEVLG+SDRI+VM +G +SGE Sbjct: 418 ILDEPTRGVDVGAKKEIYQLINQFKADGLSIILVSSEMPEVLGMSDRIIVMHEGHLSGEF 477 Query: 480 TRKDATEQSVLSLAL 494 TR+ AT++ +++ A+ Sbjct: 478 TREQATQEVLMAAAV 492 Lambda K H 0.320 0.136 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 627 Number of extensions: 32 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 512 Length of database: 501 Length adjustment: 34 Effective length of query: 478 Effective length of database: 467 Effective search space: 223226 Effective search space used: 223226 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory