Align The galacturonic acid (galacturonate) uptake porter, GatA, of 518 aas and 12 TMSs (characterized)
to candidate 18059 b4031 D-xylose transporter (NCBI)
Query= TCDB::A2R3H2 (518 letters) >lcl|FitnessBrowser__Keio:18059 b4031 D-xylose transporter (NCBI) Length = 491 Score = 198 bits (504), Expect = 3e-55 Identities = 144/502 (28%), Positives = 240/502 (47%), Gaps = 66/502 (13%) Query: 9 VYLLTAVAYSGSLLFGYDTGVM-GSVLSLTSFKEDFGIPTGSSGFASSKSSEISSNVVSL 67 ++ +T VA G LLFGYDT V+ G+V SL + + + S ++ + V+ Sbjct: 10 IFSITLVATLGGLLFGYDTAVISGTVESLNT------VFVAPQNLSESAANSLLGFCVAS 63 Query: 68 LTAGCFFGAIFAAPLNERIGRRYALMIFTVIFLIGAA-----------------VQVASK 110 GC G + R GRR +L I V+F I V V Sbjct: 64 ALIGCIIGGALGGYCSNRFGRRDSLKIAAVLFFISGVGSAWPELGFTSINPDNTVPVYLA 123 Query: 111 HHIGQIYGGRVIAGLGIGGMSSITPVFVSENCPPSIRGRVAGMFQEFLVIGSTFAYWLDY 170 ++ + R+I G+G+G S ++P++++E P IRG++ Q ++ G Y ++Y Sbjct: 124 GYVPEFVIYRIIGGIGVGLASMLSPMYIAELAPAHIRGKLVSFNQFAIIFGQLLVYCVNY 183 Query: 171 GVSLHIPSS---TKQWRVPVAVQLIPGGLMLLGLFFLKESPRWLAGKGRHEEALQSLAYI 227 ++ +S T WR A + IP L L+ L+ + ESPRWL +G+ E+A L I Sbjct: 184 FIARSGDASWLNTDGWRYMFASECIPALLFLMLLYTVPESPRWLMSRGKQEQAEGILRKI 243 Query: 228 RNESPDSEEIQKEFAEIRAAIDEEVAATEGLTYKEFIQPSNLKRFG-----FAFTLMLSQ 282 + ++ +Q EI+ ++D T G L FG L + Q Sbjct: 244 MGNTLATQAVQ----EIKHSLDHG-RKTGG----------RLLMFGVGVIVIGVMLSIFQ 288 Query: 283 QFTGTNSIGYYAPEIFQTIGLSATNSSLFATGVYGTVKVVATAIFLFVGIDRWGRKLSLV 342 QF G N + YYAPE+F+T+G S T+ +L T + G + + T + + +D++GRK + Sbjct: 289 QFVGINVVLYYAPEVFKTLGAS-TDIALLQTIIVGVINLTFTVLAIMT-VDKFGRKPLQI 346 Query: 343 GGSIWMASMMFIIGAVLATHPPDTSASGVSQASIAMVVMIYLYVIGYSASWGPTPWVYVS 402 G++ MA MF +G T P +A++ M++ YV ++ SWGP WV +S Sbjct: 347 IGALGMAIGMFSLGTAFYTQAPGI---------VALLSMLF-YVAAFAMSWGPVCWVLLS 396 Query: 403 EIFPTRLRSYGVGLAATSQWLWSFVVTEITPK-------AVHNIGWRTFLMFGIFCVAMC 455 EIFP +R + +A +QWL ++ V+ P H ++ ++G V Sbjct: 397 EIFPNAIRGKALAIAVAAQWLANYFVSWTFPMMDKNSWLVAHFHNGFSYWIYGCMGVLAA 456 Query: 456 VFVIVFAKETKGRSLEDMDILF 477 +F+ F ETKG++LE+++ L+ Sbjct: 457 LFMWKFVPETKGKTLEELEALW 478 Lambda K H 0.323 0.137 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 606 Number of extensions: 38 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 518 Length of database: 491 Length adjustment: 34 Effective length of query: 484 Effective length of database: 457 Effective search space: 221188 Effective search space used: 221188 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.5 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (22.0 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory