GapMind for catabolism of small carbon sources

 

Alignments for a candidate for acn in Escherichia coli BW25113

Align Aconitate hydratase A; ACN; Aconitase; (2R,3S)-2-methylisocitrate dehydratase; (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate dehydratase; 2-methyl-cis-aconitate hydratase; Iron-responsive protein-like; IRP-like; RNA-binding protein; EC 4.2.1.3; EC 4.2.1.99 (characterized)
to candidate 15396 b1276 aconitate hydratase (NCBI)

Query= SwissProt::Q8ZP52
         (891 letters)



>FitnessBrowser__Keio:15396
          Length = 891

 Score = 1675 bits (4337), Expect = 0.0
 Identities = 827/890 (92%), Positives = 858/890 (96%)

Query: 1   MSSTLREASKDTLQAKDKTYHYYSLPLAAKSLGDIARLPKSLKVLLENLLRWQDGESVTD 60
           MSSTLREASKDTLQAKDKTYHYYSLPLAAKSLGDI RLPKSLKVLLENLLRWQDG SVT+
Sbjct: 1   MSSTLREASKDTLQAKDKTYHYYSLPLAAKSLGDITRLPKSLKVLLENLLRWQDGNSVTE 60

Query: 61  EDIQALAGWLKNAHADREIAWRPARVLMQDFTGVPAVVDLAAMREAVKRLGGDTSKVNPL 120
           EDI ALAGWLKNAHADREIA+RPARVLMQDFTGVPAVVDLAAMREAVKRLGGDT+KVNPL
Sbjct: 61  EDIHALAGWLKNAHADREIAYRPARVLMQDFTGVPAVVDLAAMREAVKRLGGDTAKVNPL 120

Query: 121 SPVDLVIDHSVTVDHFGDDDAFEENVRLEMERNHERYMFLKWGKQAFSRFSVVPPGTGIC 180
           SPVDLVIDHSVTVD FGDD+AFEENVRLEMERNHERY+FLKWGKQAFSRFSVVPPGTGIC
Sbjct: 121 SPVDLVIDHSVTVDRFGDDEAFEENVRLEMERNHERYVFLKWGKQAFSRFSVVPPGTGIC 180

Query: 181 HQVNLEYLGKAVWSELQDGEWIAYPDSLVGTDSHTTMINGLGVLGWGVGGIEAEAAMLGQ 240
           HQVNLEYLGKAVWSELQDGEWIAYPD+LVGTDSHTTMINGLGVLGWGVGGIEAEAAMLGQ
Sbjct: 181 HQVNLEYLGKAVWSELQDGEWIAYPDTLVGTDSHTTMINGLGVLGWGVGGIEAEAAMLGQ 240

Query: 241 PVSMLIPDVVGFKLTGKLREGITATDLVLTVTQMLRKHGVVGKFVEFYGDGLDSLPLADR 300
           PVSMLIPDVVGFKLTGKLREGITATDLVLTVTQMLRKHGVVGKFVEFYGDGLDSLPLADR
Sbjct: 241 PVSMLIPDVVGFKLTGKLREGITATDLVLTVTQMLRKHGVVGKFVEFYGDGLDSLPLADR 300

Query: 301 ATIANMSPEYGATCGFFPIDAITLEYMRLSGRSDDLVELVETYAKAQGMWRNPGDEPVFT 360
           ATIANMSPEYGATCGFFPIDA+TL+YMRLSGRS+D VELVE YAKAQGMWRNPGDEP+FT
Sbjct: 301 ATIANMSPEYGATCGFFPIDAVTLDYMRLSGRSEDQVELVEKYAKAQGMWRNPGDEPIFT 360

Query: 361 STLELDMGDVEASLAGPKRPQDRVALGDVPKAFAASAELELNTAQRDRQPVDYTMNGQPY 420
           STLELDM DVEASLAGPKRPQDRVAL DVPKAFAAS ELE+N   +DRQPVDY MNG  Y
Sbjct: 361 STLELDMNDVEASLAGPKRPQDRVALPDVPKAFAASNELEVNATHKDRQPVDYVMNGHQY 420

Query: 421 QLPDGAVVIAAITSCTNTSNPSVLMAAGLLAKKAVTLGLKRQPWVKASLAPGSKVVSDYL 480
           QLPDGAVVIAAITSCTNTSNPSVLMAAGLLAKKAVTLGLKRQPWVKASLAPGSKVVSDYL
Sbjct: 421 QLPDGAVVIAAITSCTNTSNPSVLMAAGLLAKKAVTLGLKRQPWVKASLAPGSKVVSDYL 480

Query: 481 AQAKLTPYLDELGFNLVGYGCTTCIGNSGPLPEPIETAIKKGDLTVGAVLSGNRNFEGRI 540
           A+AKLTPYLDELGFNLVGYGCTTCIGNSGPLP+PIETAIKK DLTVGAVLSGNRNFEGRI
Sbjct: 481 AKAKLTPYLDELGFNLVGYGCTTCIGNSGPLPDPIETAIKKSDLTVGAVLSGNRNFEGRI 540

Query: 541 HPLVKTNWLASPPLVVAYALAGNMNINLATDPLGYDRKGDPVYLKDIWPSAQEIARAVEL 600
           HPLVKTNWLASPPLVVAYALAGNMNINLA++P+G+DRKGDPVYLKDIWPSAQEIARAVE 
Sbjct: 541 HPLVKTNWLASPPLVVAYALAGNMNINLASEPIGHDRKGDPVYLKDIWPSAQEIARAVEQ 600

Query: 601 VSSDMFRKEYAEVFEGTEEWKSIQVESSDTYGWQSDSTYIRLSPFFDEMQAQPAPVKDIH 660
           VS++MFRKEYAEVFEGT EWK I V  SDTYGWQ DSTYIRLSPFFDEMQA PAPV+DIH
Sbjct: 601 VSTEMFRKEYAEVFEGTAEWKGINVTRSDTYGWQEDSTYIRLSPFFDEMQATPAPVEDIH 660

Query: 661 GARILAMLGDSVTTDHISPAGSIKPDSPAGRYLQNHGVERKDFNSYGSRRGNHEVMMRGT 720
           GARILAMLGDSVTTDHISPAGSIKPDSPAGRYLQ  GVERKDFNSYGSRRGNHEVMMRGT
Sbjct: 661 GARILAMLGDSVTTDHISPAGSIKPDSPAGRYLQGRGVERKDFNSYGSRRGNHEVMMRGT 720

Query: 721 FANIRIRNEMLPGVEGGMTRHLPGTEAMSIYDAAMLYQQEKTPLAVIAGKEYGSGSSRDW 780
           FANIRIRNEM+PGVEGGMTRHLP ++ +SIYDAAM Y+QE+TPLAVIAGKEYGSGSSRDW
Sbjct: 721 FANIRIRNEMVPGVEGGMTRHLPDSDVVSIYDAAMRYKQEQTPLAVIAGKEYGSGSSRDW 780

Query: 781 AAKGPRLLGIRVVIAESFERIHRSNLIGMGILPLEFPQGVTRKTLGLTGEEVIDIADLQN 840
           AAKGPRLLGIRVVIAESFERIHRSNLIGMGILPLEFPQGVTRKTLGLTGEE IDI DLQN
Sbjct: 781 AAKGPRLLGIRVVIAESFERIHRSNLIGMGILPLEFPQGVTRKTLGLTGEEKIDIGDLQN 840

Query: 841 LRPGATIPVTLTRSDGSKETVPCRCRIDTATELTYYQNDGILHYVIRNML 890
           L+PGAT+PVTLTR+DGS+E VPCRCRIDTATELTYYQNDGILHYVIRNML
Sbjct: 841 LQPGATVPVTLTRADGSQEVVPCRCRIDTATELTYYQNDGILHYVIRNML 890


Lambda     K      H
   0.317    0.135    0.401 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2499
Number of extensions: 96
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 891
Length of database: 891
Length adjustment: 43
Effective length of query: 848
Effective length of database: 848
Effective search space:   719104
Effective search space used:   719104
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory