Align PTS system glucose-specific EIICB component; EIICB-Glc; EII-Glc; EC 2.7.1.199 (characterized)
to candidate 14809 b0679 fused N-acetyl glucosamine specific PTS enzyme: IIC, IIB , and IIA components (NCBI)
Query= SwissProt::P37439 (477 letters) >FitnessBrowser__Keio:14809 Length = 648 Score = 373 bits (958), Expect = e-108 Identities = 202/485 (41%), Positives = 302/485 (62%), Gaps = 34/485 (7%) Query: 4 NAFANLQKVGKSLMLPVSVLPIAGILLGVGSANFSWLPAVVSHVMAEAGGSVFANMPLIF 63 N Q++G++L LP++VLP+A +LL G + + + A+AGG++F N+ LIF Sbjct: 2 NILGFFQRLGRALQLPIAVLPVAALLLRFGQPDLLNVAFI-----AQAGGAIFDNLALIF 56 Query: 64 AIGVALGFTNND-GVSALAAVVAYGIMVKTMAVVAPLVLHLPAEEIAAKHLADTGVLGGI 122 AIGVA ++ + G +ALA V Y ++ K M + P + + GVL GI Sbjct: 57 AIGVASSWSKDSAGAAALAGAVGYFVLTKAMVTINPEI--------------NMGVLAGI 102 Query: 123 ISGAIAAYMFNRFYRIKLPEYLGFFAGKRFVPIISGLAAIFTGVVLSFVWPPIGTAIQAF 182 I+G + +NR+ IKLP++L FF GKRFVPI +G + + +VWPP+ AI A Sbjct: 103 ITGLVGGAAYNRWSDIKLPDFLSFFGGKRFVPIATGFFCLVLAAIFGYVWPPVQHAIHAG 162 Query: 183 SQWAAYQNPVVAFGIYGFIERCLVPFGLHHIWNVPFQMQIGEYTNAAGQVFHGDIPRYMA 242 +W + GI+GFI R L+P GLH + N QIGE+TNAAG VFHGDI R+ A Sbjct: 163 GEWIVSAG-ALGSGIFGFINRLLIPTGLHQVLNTIAWFQIGEFTNAAGTVFHGDINRFYA 221 Query: 243 GDPTAGM-LSGGFLFKMYGLPAAAIAIWHSAKPENRAKVGGIMISAALTSFLTGITEPIE 301 GD TAGM +SG F M+GLP AA+A++ +A E R VGG+++S A+T+FLTG+TEP+E Sbjct: 222 GDGTAGMFMSGFFPIMMFGLPGAALAMYFAAPKERRPMVGGMLLSVAVTAFLTGVTEPLE 281 Query: 302 FSFMFVAPILYIIHAILAGLAFPICILLGMRDGTSFSHGLIDFIV---LSGNSSKLWLFP 358 F FMF+AP+LY++HA+L G++ + LLG+ G SFS G ID+ + L S +W+ Sbjct: 282 FLFMFLAPLLYLLHALLTGISLFVATLLGIHAGFSFSAGAIDYALMYNLPAASQNVWMLL 341 Query: 359 IVGAGYAIVYYTVFRVLIKALDLKTPGREDTTDD---AKAGATSE-----MAPALVAAFG 410 ++G + +Y+ VF ++I+ +LKTPGRED D+ +A + +E +A +AA G Sbjct: 342 VMGVIFFAIYFVVFSLVIRMFNLKTPGREDKEDEIVTEEANSNTEEGLTQLATNYIAAVG 401 Query: 411 GKENITNLDACITRLRVSVADVAKVDQAGLKKLGAAGVV-VAGSGVQAIFGTKSDNLKTE 469 G +N+ +DACITRLR++VAD A+V+ K+LGA+GVV + +Q I G K++++ Sbjct: 402 GTDNLKAIDACITRLRLTVADSARVNDTMCKRLGASGVVKLNKQTIQVIVGAKAESIGDA 461 Query: 470 MDEYI 474 M + + Sbjct: 462 MKKVV 466 Lambda K H 0.325 0.140 0.421 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 850 Number of extensions: 57 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 477 Length of database: 648 Length adjustment: 36 Effective length of query: 441 Effective length of database: 612 Effective search space: 269892 Effective search space used: 269892 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory