Align Alpha-aminoadipic semialdehyde dehydrogenase; Alpha-AASA dehydrogenase; Aldehyde dehydrogenase family 7 member A1; Antiquitin-1; Betaine aldehyde dehydrogenase; Delta1-piperideine-6-carboxylate dehydrogenase; P6c dehydrogenase; EC 1.2.1.31; EC 1.2.1.3; EC 1.2.1.8 (characterized)
to candidate 16751 b2661 succinate-semialdehyde dehydrogenase I, NADP-dependent (NCBI)
Query= SwissProt::Q64057 (539 letters) >FitnessBrowser__Keio:16751 Length = 482 Score = 231 bits (588), Expect = 6e-65 Identities = 142/469 (30%), Positives = 238/469 (50%), Gaps = 10/469 (2%) Query: 52 EGVFNGSW--GGRGEVITTYCPANNEPIARVRQASMKDYEETIGKAKKAWNIWADIPAPK 109 + + NG W GE I PAN + + V + + I A +A W + A + Sbjct: 12 QALINGEWLDANNGEAIDVTNPANGDKLGSVPKMGADETRAAIDAANRALPAWRALTAKE 71 Query: 110 RGEIVRKIGDALREKIQLLGRLVSLEMGKILVEGIGEVQEYVDVCDYAAGLSRMIGGPTL 169 R I+R + + E L RL++LE GK L E GE+ ++ A + I G T+ Sbjct: 72 RATILRNWFNLMMEHQDDLARLMTLEQGKPLAEAKGEISYAASFIEWFAEEGKRIYGDTI 131 Query: 170 PSERPGHALMEQWNPLGLVGIITAFNFPVAVFGWNNAIALITGNVCLWKGAPTTSLVSIA 229 P + L+ P+G+ IT +NFP A+ AL G + K A T ++A Sbjct: 132 PGHQADKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLKPASQTPFSALA 191 Query: 230 VTKIIAKVLEDNLLPGAICSLTCGGAD-MGTAMARDERVNLLSFTGSTQVGKQVALMVQE 288 + ++ + +P + ++ G A +G + + V LSFTGST++G+Q+ + Sbjct: 192 LAELAIRAG----VPAGVFNVVTGSAGAVGNELTSNPLVRKLSFTGSTEIGRQLMEQCAK 247 Query: 289 RFGKSLLELGGNNAIIAFEDADLSLVLPSALFAAVGTAGQRCTTVRRLFLHESIHDEVVD 348 K LELGGN I F+DADL + AL + AGQ C RL++ + ++D + Sbjct: 248 DIKKVSLELGGNAPFIVFDDADLDKAVEGALASKFRNAGQTCVCANRLYVQDGVYDRFAE 307 Query: 349 RLKNAYSQIRVGNPWDPNILYGPLHTKQAVSMFVQAVEEAKKEGGTVVYGGKVMDHPGNY 408 +L+ A S++ +G+ D + GPL ++AV+ + + +A ++G VV GGK + GN+ Sbjct: 308 KLQQAVSKLHIGDGLDNGVTIGPLIDEKAVAKVEEHIADALEKGARVVCGGKAHERGGNF 367 Query: 409 VEPTIVTGLVHDAPIVHKETFAPILYVFKFKNEEEVFEWNNEVKQGLSSSIFTKDLGRIF 468 +PTI+ + +A + +ETF P+ +F+FK+E +V N+ + GL++ + +DL R+F Sbjct: 368 FQPTILVDVPANAKVSKEETFGPLAPLFRFKDEADVIAQANDTEFGLAAYFYARDLSRVF 427 Query: 469 RWLGPKGSDCGIVNVNIPTSGAEIGGAFGGEKHTGGGRESGSDAWKQYM 517 R +G + + GIV +N E+ FGG K +G GRE + Y+ Sbjct: 428 R-VG-EALEYGIVGINTGIISNEV-APFGGIKASGLGREGSKYGIEDYL 473 Lambda K H 0.319 0.137 0.417 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 609 Number of extensions: 29 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 539 Length of database: 482 Length adjustment: 34 Effective length of query: 505 Effective length of database: 448 Effective search space: 226240 Effective search space used: 226240 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory