Align Mannitol dehydrogenase DSF1; Deletion suppressor of MPT5 mutation protein 1; EC 1.1.1.67 (characterized)
to candidate 15664 b1542 predicted mannonate dehydrogenase (NCBI)
Query= SwissProt::P0CX08 (502 letters) >FitnessBrowser__Keio:15664 Length = 486 Score = 347 bits (891), Expect = e-100 Identities = 196/483 (40%), Positives = 277/483 (57%), Gaps = 11/483 (2%) Query: 17 LKSFESTLPIPTYPREGVKQGIVHLGVGAFHRSHLAVFMHRLMQEHHLKDWSICGVGLMK 76 L S ++TLP+ Y + IVHLG GAFHR+H V+ L EH DW V L+ Sbjct: 5 LLSAKATLPV--YDLNNLAPRIVHLGFGAFHRAHQGVYADILATEH-FSDWGYYEVNLIG 61 Query: 77 ADALMRDAMKAQDCLYTLVERGIKDTNAYIVGSITAYMYAP-DDPRAVIEKMANPDTHIV 135 + + D ++ QD LYT+ E A +VG + ++ D V+ M P IV Sbjct: 62 GEQQIAD-LQQQDNLYTVAEMSADVWTARVVGVVKKALHVQIDGLETVLAAMCEPQIAIV 120 Query: 136 SLTVTENGYYHSEATNSLMTDAPEIINDLNHPEKPDTLYGYLYEALLLRYKRGLTPFTIM 195 SLT+TE GY+HS AT LM D P + D+ +P +P T G + EAL R GL FT+M Sbjct: 121 SLTITEKGYFHSPATGQLMLDHPMVAADVQNPHQPKTATGVIVEALARRKAAGLPAFTVM 180 Query: 196 SCDNMPQNGVTVKTMLVAFAKLKKDEKFAAWIEDKVTSPNSMVDRVTPRCTDKERKYVAD 255 SCDNMP+NG ++ ++ ++A+ D K A WIED VT P++MVDR+ P T+ + Sbjct: 181 SCDNMPENGHVMRDVVTSYAQAV-DVKLAQWIEDNVTFPSTMVDRIVPAVTEDTLAKIEQ 239 Query: 256 TWGIKDQCPVVAEPFIQWVLEDNFSDGRPPWELVGVQVVKDVDSYELMKLRLLNGGHSAM 315 G++D V EPF QWV+EDNF GRP WE G ++V DV YE MKLR+LNG HS + Sbjct: 240 LTGVRDPAGVACEPFRQWVIEDNFVAGRPEWEKAGAELVSDVLPYEEMKLRMLNGSHSFL 299 Query: 316 GYLGYLAGYTYIHEVVNDPTINKYIRVLMREEVIPLLPKVPGVDFEEYTASVLERFSNPA 375 YLGYLAGY +I++ + D LM +E P L KV GVD ++Y ++ R+SNPA Sbjct: 300 AYLGYLAGYQHINDCMEDEHYRYAAYGLMLQEQAPTL-KVQGVDLQDYANRLIARYSNPA 358 Query: 376 IQDTVARICLMGSGKMPKYVLPSIYEQLRKPDGKYKLLAVCVAGWFRYLTGVDMNGKPFE 435 ++ +I + GS K+P+ +L S+ L D K+ LLA+ VAGW RY+ GVD G P E Sbjct: 359 LRHRTWQIAMDGSQKLPQRMLDSVRWHLAH-DSKFDLLALGVAGWMRYVGGVDEQGNPIE 417 Query: 436 IEDPMAPTLKAA---AVKGGKDPHELLNIEVLFSPEIRDNKEFVAQLTHSLETVYDKGPI 492 I DP+ P ++ A + +G LL I+ +F ++ DN F A++T + ++ G Sbjct: 418 ISDPLLPVIQKAVQSSAEGKARVQSLLAIKAIFGDDLPDNSLFTARVTETYLSLLAHGAK 477 Query: 493 AAI 495 A + Sbjct: 478 ATV 480 Lambda K H 0.319 0.136 0.409 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 643 Number of extensions: 30 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 502 Length of database: 486 Length adjustment: 34 Effective length of query: 468 Effective length of database: 452 Effective search space: 211536 Effective search space used: 211536 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory