Align The high affinity sugar:H+ symporter (sugar uptake) porter of 514 aas and 12 TMSs, STP10. It transports glucose, galactose and mannose, and is therefore a hexose transporter (Rottmann et al. 2016). The 2.4 (characterized)
to candidate 17022 b2943 D-galactose transporter (NCBI)
Query= TCDB::Q9LT15 (514 letters) >lcl|FitnessBrowser__Keio:17022 b2943 D-galactose transporter (NCBI) Length = 464 Score = 238 bits (606), Expect = 5e-67 Identities = 155/472 (32%), Positives = 252/472 (53%), Gaps = 42/472 (8%) Query: 23 AFVIMTCIVAAMGGLLFGYDLGISGGVTSMEEFLTKFFPQVESQMKKAKHDTAYCKFDNQ 82 A C +AA+ GLLFG D+G+ G P + + + H + Sbjct: 13 AMTFFVCFLAALAGLLFGLDIGVIAGA----------LPFIADEFQITSHTQEWV----- 57 Query: 83 MLQLFTSSLYLAALVASFMASVITRKHGRKVSMFIGGLAFLIGALFNAFAVNVSMLIIGR 142 SS+ A V + + ++ K GRK S+ IG + F+ G+LF+A A NV +LI+ R Sbjct: 58 -----VSSMMFGAAVGAVGSGWLSFKLGRKKSLMIGAILFVAGSLFSAAAPNVEVLILSR 112 Query: 143 LLLGVGVGFANQSTPVYLSEMAPAKIRGALNIGFQMAITIGILVANLINYGTSKMAQHGW 202 +LLG+ VG A+ + P+YLSE+AP KIRG++ +Q+ ITIGIL A L + T+ W Sbjct: 113 VLLGLAVGVASYTAPLYLSEIAPEKIRGSMISMYQLMITIGILGAYLSD--TAFSYTGAW 170 Query: 203 RVSLGLAAVPAVVMVIGSFILPDTPNSMLERGKNEEAKQMLKKIRGADNVDHEFQDLIDA 262 R LG+ +PA++++IG F LPD+P + + +A+++L ++R D ++L + Sbjct: 171 RWMLGVIIIPAILLLIGVFFLPDSPRWFAAKRRFVDAERVLLRLR--DTSAEAKRELDEI 228 Query: 263 VEAAKKVENPWKNIME-SKYRPALIFCSAIPFFQQITGINVIMFYAPVLFKTLGFGDDAA 321 E+ + ++ W E S +R A+ + QQ TG+NVIM+YAP +F+ G+ + Sbjct: 229 RESLQVKQSGWALFKENSNFRRAVFLGVLLQVMQQFTGMNVIMYYAPKIFELAGYTNTTE 288 Query: 322 LM-SAVITGVVNMLSTFVSIYAVDRYGRRLLFLEGGIQMFICQLLVGSFIGARFGTSGT- 379 M VI G+ N+L+TF++I VDR+GR+ G + M A G GT Sbjct: 289 QMWGTVIVGLTNVLATFIAIGLVDRWGRKPTLTLGFLVM-----------AAGMGVLGTM 337 Query: 380 ---GTLTPATADWILAFICVYVAGFAWSWGPLGWLVPSEICPLEIRPAGQAINVSVNMFF 436 G +P+ + +A + +++ GFA S GPL W++ SEI PL+ R G + + N Sbjct: 338 MHIGIHSPSAQYFAIAMLLMFIVGFAMSAGPLIWVLCSEIQPLKGRDFGITCSTATNWIA 397 Query: 437 TFLIGQFFLTMLCHM-KFGLFYFFASMVAIMTVFIYFLLPETKGVPIEEMGR 487 ++G FLTML + F+ +A++ + + +L+PETK V +E + R Sbjct: 398 NMIVGATFLTMLNTLGNANTFWVYAALNVLFILLTLWLVPETKHVSLEHIER 449 Lambda K H 0.327 0.141 0.434 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 602 Number of extensions: 26 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 514 Length of database: 464 Length adjustment: 34 Effective length of query: 480 Effective length of database: 430 Effective search space: 206400 Effective search space used: 206400 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory