Align Inositol transport system ATP-binding protein (characterized)
to candidate 17809 b3749 fused D-ribose transporter subunits of ABC superfamily: ATP-binding components (NCBI)
Query= reanno::Phaeo:GFF717 (261 letters) >FitnessBrowser__Keio:17809 Length = 501 Score = 155 bits (391), Expect = 2e-42 Identities = 80/243 (32%), Positives = 143/243 (58%), Gaps = 6/243 (2%) Query: 5 QPLIRMQGIEKHFGSVIALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDI 64 + L++++GI+K F V AL+G +++V+PG L+G+NGAGKST +K ++G++ G + Sbjct: 2 EALLQLKGIDKAFPGVKALSGAALNVYPGRVMALVGENGAGKSTMMKVLTGIYTRDAGTL 61 Query: 65 LFEGQPLHFADPRDAIAAGIATVHQHLAMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDYA 124 L+ G+ F P+ + AGI +HQ L +IP ++++ N F+G E + + G + D+ Sbjct: 62 LWLGKETTFTGPKSSQEAGIGIIHQELNLIPQLTIAENIFLGREFVNRFGKI-----DWK 116 Query: 125 NRITMEEMRKMGINLR-GPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQ 183 + +NLR D+ VG LS G++Q V IA+ + F +KV+I+DEPT AL + Sbjct: 117 TMYAEADKLLAKLNLRFKSDKLVGDLSIGDQQMVEIAKVLSFESKVIIMDEPTDALTDTE 176 Query: 184 TANVLATIDKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQDM 243 T ++ I +++ QG +V+I+H ++ + D TV G+ + + ++ + L +M Sbjct: 177 TESLFRVIRELKSQGRGIVYISHRMKEIFEICDDVTVFRDGQFIAEREVASLTEDSLIEM 236 Query: 244 MAG 246 M G Sbjct: 237 MVG 239 Score = 86.7 bits (213), Expect = 9e-22 Identities = 64/226 (28%), Positives = 103/226 (45%), Gaps = 8/226 (3%) Query: 26 VSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDILFEGQPLHFADPRDAIAAGIA 85 VS + GE + G GAG++ +K + G T G + +G + P+D +A GI Sbjct: 271 VSFTLRKGEILGVSGLMGAGRTELMKVLYGALPRTSGYVTLDGHEVVTRSPQDGLANGIV 330 Query: 86 TVHQHL---AMIPLMSVSRNFFMGNEPI--RKIGPLKLFDHDYANRITMEEMRKMGINLR 140 + + ++ MSV N + R G LK D A + +R + Sbjct: 331 YISEDRKRDGLVLGMSVKENMSLTALRYFSRAGGSLKHADEQQA---VSDFIRLFNVKTP 387 Query: 141 GPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTANVLATIDKVRKQGVA 200 +QA+G LSGG +Q VAIAR + KVLILDEPT + V + I++ + G++ Sbjct: 388 SMEQAIGLLSGGNQQKVAIARGLMTRPKVLILDEPTRGVDVGAKKEIYQLINQFKADGLS 447 Query: 201 VVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQDMMAG 246 ++ ++ + L + DR V++ G G R + E L G Sbjct: 448 IILVSSEMPEVLGMSDRIIVMHEGHLSGEFTREQATQEVLMAAAVG 493 Lambda K H 0.321 0.137 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 298 Number of extensions: 18 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 261 Length of database: 501 Length adjustment: 29 Effective length of query: 232 Effective length of database: 472 Effective search space: 109504 Effective search space used: 109504 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory