Align Inositol transport ATP-binding protein IatA, component of The myoinositol (high affinity)/ D-ribose (low affinity) transporter IatP/IatA/IbpA. The structure of IbpA with myoinositol bound has been solved (characterized)
to candidate 17809 b3749 fused D-ribose transporter subunits of ABC superfamily: ATP-binding components (NCBI)
Query= TCDB::B8H229 (515 letters) >FitnessBrowser__Keio:17809 Length = 501 Score = 387 bits (995), Expect = e-112 Identities = 209/504 (41%), Positives = 316/504 (62%), Gaps = 10/504 (1%) Query: 3 LLDVSQVSKSFPGVRALDQVDLVVGVGEVHALLGENGAGKSTLIKILSAAHAADAGTVTF 62 LL + + K+FPGV+AL L V G V AL+GENGAGKST++K+L+ + DAGT+ + Sbjct: 4 LLQLKGIDKAFPGVKALSGAALNVYPGRVMALVGENGAGKSTMMKVLTGIYTRDAGTLLW 63 Query: 63 AGQVLDPRDAPLRRQQLGIATIYQEFNLFPELSVAENMYLGRE-PRRLGLVDWSRLRADA 121 G+ P Q+ GI I+QE NL P+L++AEN++LGRE R G +DW + A+A Sbjct: 64 LGKETT-FTGPKSSQEAGIGIIHQELNLIPQLTIAENIFLGREFVNRFGKIDWKTMYAEA 122 Query: 122 QALLNDLGLPLNPDAPVRGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDRLHA 181 LL L L D V L++ +QQMVEIAK ++ +++IIMDEPT AL+ E + L Sbjct: 123 DKLLAKLNLRFKSDKLVGDLSIGDQQMVEIAKVLSFESKVIIMDEPTDALTDTETESLFR 182 Query: 182 IIAGLKARSVSVIYVSHRLGEVKAMCDRYTVMRDGRFVASGDVADVEVADMVRLMVGRHV 241 +I LK++ ++Y+SHR+ E+ +CD TV RDG+F+A +VA + ++ +MVGR + Sbjct: 183 VIRELKSQGRGIVYISHRMKEIFEICDDVTVFRDGQFIAEREVASLTEDSLIEMMVGRKL 242 Query: 242 EFERRKRRRPPGAVVLKVEGVTPAAPRLSAPGYLRQVSFAARGGEIVGLAGLVGAGRTDL 301 E + + PG + LKV+ L PG + VSF R GEI+G++GL+GAGRT+L Sbjct: 243 EDQYPHLDKAPGDIRLKVDN-------LCGPG-VNDVSFTLRKGEILGVSGLMGAGRTEL 294 Query: 302 ARLIFGADPIAAGRVLVDDKPLRLRSPRDAIQAGIMLVPEDRKQQGCFLDHSIRRNLSLP 361 ++++GA P +G V +D + RSP+D + GI+ + EDRK+ G L S++ N+SL Sbjct: 295 MKVLYGALPRTSGYVTLDGHEVVTRSPQDGLANGIVYISEDRKRDGLVLGMSVKENMSLT 354 Query: 362 SLKALSALGQWVDERAERDLVETYRQKLRIKMADAETAIGKLSGGNQQKVLLGRAMALTP 421 +L+ S G + E+ V + + +K E AIG LSGGNQQKV + R + P Sbjct: 355 ALRYFSRAGGSLKHADEQQAVSDFIRLFNVKTPSMEQAIGLLSGGNQQKVAIARGLMTRP 414 Query: 422 KVLIVDEPTRGIDIGAKAEVHQVLSDLADLGVAVVVISSELAEVMAVSDRIVVFREGVIV 481 KVLI+DEPTRG+D+GAK E++Q+++ G++++++SSE+ EV+ +SDRI+V EG + Sbjct: 415 KVLILDEPTRGVDVGAKKEIYQLINQFKADGLSIILVSSEMPEVLGMSDRIIVMHEGHLS 474 Query: 482 ADLDAQTATEEGLMAYMATGTDRV 505 + + AT+E LMA +RV Sbjct: 475 GEFTREQATQEVLMAAAVGKLNRV 498 Lambda K H 0.320 0.136 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 622 Number of extensions: 39 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 501 Length adjustment: 34 Effective length of query: 481 Effective length of database: 467 Effective search space: 224627 Effective search space used: 224627 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory