Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate 15420 b1300 gamma-Glu-gamma-aminobutyraldehyde dehydrogenase, NAD(P)H-dependent (NCBI)
Query= BRENDA::P05091 (517 letters) >FitnessBrowser__Keio:15420 Length = 495 Score = 384 bits (986), Expect = e-111 Identities = 204/479 (42%), Positives = 296/479 (61%), Gaps = 8/479 (1%) Query: 37 NQIFINNEWHDAVSRKTFPTVNPSTGEVICQVAEGDKEDVDKAVKAARAAFQLGSPWRRM 96 N++FIN E+ A +TF TV+P T + ++A G D+D+A+ AAR F+ G W Sbjct: 20 NRLFINGEYTAAAENETFETVDPVTQAPLAKIARGKSVDIDRAMSAARGVFERGD-WSLS 78 Query: 97 DASHRGRLLNRLADLIERDRTYLAALETLDNGKPYVISYLVDLDMVLKCLRYYAGWADKY 156 + R +LN+LADL+E LA LETLD GKP S D+ + +R+YA DK Sbjct: 79 SPAKRKAVLNKLADLMEAHAEELALLETLDTGKPIRHSLRDDIPGAARAIRWYAEAIDKV 138 Query: 157 HGKTIPIDGDFFSYTRHEPVGVCGQIIPWNFPLLMQAWKLGPALATGNVVVMKVAEQTPL 216 +G+ + EPVGV I+PWNFPLL+ WKLGPALA GN V++K +E++PL Sbjct: 139 YGEVATTSSHELAMIVREPVGVIAAIVPWNFPLLLTCWKLGPALAAGNSVILKPSEKSPL 198 Query: 217 TALYVANLIKEAGFPPGVVNIVPGFGPTAGAAIASHEDVDKVAFTGSTEIGRVIQVAAGS 276 +A+ +A L KEAG P GV+N+V GFG AG A++ H D+D +AFTGST G+ + AG Sbjct: 199 SAIRLAGLAKEAGLPDGVLNVVTGFGHEAGQALSRHNDIDAIAFTGSTRTGKQLLKDAGD 258 Query: 277 SNLKRVTLELGGKSPNIIMSDA-DMDWAVEQAHFALFFNQGQCCCAGSRTFVQEDIYDEF 335 SN+KRV LE GGKS NI+ +D D+ A +F+NQGQ C AG+R ++E I DEF Sbjct: 259 SNMKRVWLEAGGKSANIVFADCPDLQQAASATAAGIFYNQGQVCIAGTRLLLEESIADEF 318 Query: 336 VERSVARAKSRVVGNPFDSKTEQGPQVDETQFKKILGYINTGKQEGAKLLCG--GGIAAD 393 + +A++ G+P D T G +D + +I G+ +G LL G G+AA Sbjct: 319 LALLKQQAQNWQPGHPLDPATTMGTLIDCAHADSVHSFIREGESKGQLLLDGRNAGLAAA 378 Query: 394 RGYFIQPTVFGDVQDGMTIAKEEIFGPVMQILKFKTIEEVVGRANNSTYGLAAAVFTKDL 453 G PT+F DV ++++EEIFGPV+ + +F + E+ + AN+S YGL AAV+T+DL Sbjct: 379 IG----PTIFVDVDPNASLSREEIFGPVLVVTRFTSEEQALQLANDSQYGLGAAVWTRDL 434 Query: 454 DKANYLSQALQAGTVWVNCYDVFGAQSPFGGYKMSGSGRELGEYGLQAYTEVKTVTVKV 512 +A+ +S+ L+AG+V+VN Y+ PFGGYK SG+GR+ + L+ +TE+KT+ + + Sbjct: 435 SRAHRMSRRLKAGSVFVNNYNDGDMTVPFGGYKQSGNGRDKSLHALEKFTELKTIWISL 493 Lambda K H 0.319 0.136 0.409 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 591 Number of extensions: 26 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 517 Length of database: 495 Length adjustment: 34 Effective length of query: 483 Effective length of database: 461 Effective search space: 222663 Effective search space used: 222663 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory