Align succinate-semialdehyde dehydrogenase (NADP+) (EC 1.2.1.79) (characterized)
to candidate 16751 b2661 succinate-semialdehyde dehydrogenase I, NADP-dependent (NCBI)
Query= BRENDA::P25526 (482 letters) >FitnessBrowser__Keio:16751 Length = 482 Score = 955 bits (2469), Expect = 0.0 Identities = 482/482 (100%), Positives = 482/482 (100%) Query: 1 MKLNDSNLFRQQALINGEWLDANNGEAIDVTNPANGDKLGSVPKMGADETRAAIDAANRA 60 MKLNDSNLFRQQALINGEWLDANNGEAIDVTNPANGDKLGSVPKMGADETRAAIDAANRA Sbjct: 1 MKLNDSNLFRQQALINGEWLDANNGEAIDVTNPANGDKLGSVPKMGADETRAAIDAANRA 60 Query: 61 LPAWRALTAKERATILRNWFNLMMEHQDDLARLMTLEQGKPLAEAKGEISYAASFIEWFA 120 LPAWRALTAKERATILRNWFNLMMEHQDDLARLMTLEQGKPLAEAKGEISYAASFIEWFA Sbjct: 61 LPAWRALTAKERATILRNWFNLMMEHQDDLARLMTLEQGKPLAEAKGEISYAASFIEWFA 120 Query: 121 EEGKRIYGDTIPGHQADKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLK 180 EEGKRIYGDTIPGHQADKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLK Sbjct: 121 EEGKRIYGDTIPGHQADKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLK 180 Query: 181 PASQTPFSALALAELAIRAGVPAGVFNVVTGSAGAVGNELTSNPLVRKLSFTGSTEIGRQ 240 PASQTPFSALALAELAIRAGVPAGVFNVVTGSAGAVGNELTSNPLVRKLSFTGSTEIGRQ Sbjct: 181 PASQTPFSALALAELAIRAGVPAGVFNVVTGSAGAVGNELTSNPLVRKLSFTGSTEIGRQ 240 Query: 241 LMEQCAKDIKKVSLELGGNAPFIVFDDADLDKAVEGALASKFRNAGQTCVCANRLYVQDG 300 LMEQCAKDIKKVSLELGGNAPFIVFDDADLDKAVEGALASKFRNAGQTCVCANRLYVQDG Sbjct: 241 LMEQCAKDIKKVSLELGGNAPFIVFDDADLDKAVEGALASKFRNAGQTCVCANRLYVQDG 300 Query: 301 VYDRFAEKLQQAVSKLHIGDGLDNGVTIGPLIDEKAVAKVEEHIADALEKGARVVCGGKA 360 VYDRFAEKLQQAVSKLHIGDGLDNGVTIGPLIDEKAVAKVEEHIADALEKGARVVCGGKA Sbjct: 301 VYDRFAEKLQQAVSKLHIGDGLDNGVTIGPLIDEKAVAKVEEHIADALEKGARVVCGGKA 360 Query: 361 HERGGNFFQPTILVDVPANAKVSKEETFGPLAPLFRFKDEADVIAQANDTEFGLAAYFYA 420 HERGGNFFQPTILVDVPANAKVSKEETFGPLAPLFRFKDEADVIAQANDTEFGLAAYFYA Sbjct: 361 HERGGNFFQPTILVDVPANAKVSKEETFGPLAPLFRFKDEADVIAQANDTEFGLAAYFYA 420 Query: 421 RDLSRVFRVGEALEYGIVGINTGIISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYMCI 480 RDLSRVFRVGEALEYGIVGINTGIISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYMCI Sbjct: 421 RDLSRVFRVGEALEYGIVGINTGIISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYMCI 480 Query: 481 GL 482 GL Sbjct: 481 GL 482 Lambda K H 0.318 0.135 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 932 Number of extensions: 23 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 482 Length of database: 482 Length adjustment: 34 Effective length of query: 448 Effective length of database: 448 Effective search space: 200704 Effective search space used: 200704 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory