Align NAD(P)+ L-lactaldehyde dehydrogenase (EC 1.2.1.22) (characterized)
to candidate 15507 b1385 phenylacetaldehyde dehydrogenase (VIMSS)
Query= metacyc::MONOMER-16244 (495 letters) >FitnessBrowser__Keio:15507 Length = 499 Score = 372 bits (954), Expect = e-107 Identities = 192/476 (40%), Positives = 294/476 (61%), Gaps = 9/476 (1%) Query: 22 GLFINNEFVQSKSKKTFGTVSPSTEEEITQVYEAFSEDIDDAVEAATAAFHSS-WSTSDP 80 GL+I+ ++S+K P+T +EI +A D+D+AV +A AF S W+ P Sbjct: 21 GLYIDGRPGPAQSEKRLAIFDPATGQEIASTADANEADVDNAVMSAWRAFVSRRWAGRLP 80 Query: 81 QVRMKVLYKLADLIDEHADTLAHIEALDNGKSLMCSKG-DVALTAAYFRSCAGWTDKIKG 139 R ++L + ADL+++H++ LA +E L+ GKS+ S+ +V T + R AG T KI G Sbjct: 81 AERERILLRFADLVEQHSEELAQLETLEQGKSIAISRAFEVGCTLNWMRYTAGLTTKIAG 140 Query: 140 SVIET------GDTHFNYTRREPIGVCGQIIPWNFPLLMASWKLGPVLCTGCTTVLKTAE 193 ++ G + +TR+EP+GV I+PWNFPL++ WK+ P L GC+ V+K +E Sbjct: 141 KTLDLSIPLPQGARYQAWTRKEPVGVVAGIVPWNFPLMIGMWKVMPALAAGCSIVIKPSE 200 Query: 194 STPLSALYLASLIKEAGAPPGVVNVVSGFGPTAGAPISSHPKIKKVAFTGSTATGRHIMK 253 +TPL+ L +A L EAG P GV NVV+G G GA ++SHP + K++FTGSTATG+ I + Sbjct: 201 TTPLTMLRVAELASEAGIPDGVFNVVTGSGAVCGAALTSHPHVAKISFTGSTATGKGIAR 260 Query: 254 AAAESNLKKVTLELGGKSPNIVFDDADVKSTIQHLVTGIFYNTGEVCCAGSRIYVQEGIY 313 AA+ +L +VTLELGGK+P IV DAD + I+ L+TG F N G+VC A SRIY++ ++ Sbjct: 261 TAAD-HLTRVTLELGGKNPAIVLKDADPQWVIEGLMTGSFLNQGQVCAASSRIYIEAPLF 319 Query: 314 DKIVSEFKNAAESLKIGDPFKEDTFMGAQTSQLQLDKILKYIDIGKKEGATVITGGERFG 373 D +VS F+ A +SL++G + S+ DK+ ++D + + A +I G Sbjct: 320 DTLVSGFEQAVKSLQVGPGMSPVAQINPLVSRAHCDKVCSFLDDAQAQQAELIRGSNGPA 379 Query: 374 NKGYFIKPTIFGDVKEDHQIVRDEIFGPVVTITKFKTVEEVIALANDSEYGLAAGVHTTN 433 +GY++ PT+ + ++ R+E+FGPVV + + EE + LAND+EYGL A V T N Sbjct: 380 GEGYYVAPTLVVNPDAKLRLTREEVFGPVVNLVRVADGEEALQLANDTEYGLTASVWTQN 439 Query: 434 LSTAISVSNKINSGTIWVNTYNDFHPMVPFGGYSQSGIGREMGEEALDNYTQVKAV 489 LS A+ S+++ +GT+WVN++ +PFGG QSG GR+ G + LD + + K+V Sbjct: 440 LSQALEYSDRLQAGTVWVNSHTLIDANLPFGGMKQSGTGRDFGPDWLDGWCETKSV 495 Lambda K H 0.316 0.133 0.389 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 586 Number of extensions: 22 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 499 Length adjustment: 34 Effective length of query: 461 Effective length of database: 465 Effective search space: 214365 Effective search space used: 214365 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory