Align Fructose import ATP-binding protein FrcA; EC 7.5.2.- (characterized)
to candidate 17809 b3749 fused D-ribose transporter subunits of ABC superfamily: ATP-binding components (NCBI)
Query= SwissProt::Q9F9B0 (260 letters) >FitnessBrowser__Keio:17809 Length = 501 Score = 150 bits (380), Expect = 4e-41 Identities = 89/248 (35%), Positives = 138/248 (55%), Gaps = 8/248 (3%) Query: 4 EPILTARGLVKRYGRVTALDRADFDLYPGEILAVIGDNGAGKSSMIKAISGAVTPDEGEI 63 E +L +G+ K + V AL A ++YPG ++A++G+NGAGKS+M+K ++G T D G + Sbjct: 2 EALLQLKGIDKAFPGVKALSGAALNVYPGRVMALVGENGAGKSTMMKVLTGIYTRDAGTL 61 Query: 64 RLEGKPIQFRSPMEARQAGIETVYQNLALSPALSIADNMFLGREIRKPGIMGKWFRSLDR 123 GK F P +++AGI ++Q L L P L+IA+N+FLGRE F +D Sbjct: 62 LWLGKETTFTGPKSSQEAGIGIIHQELNLIPQLTIAENIFLGREFVNR------FGKIDW 115 Query: 124 AAMEKQARAKLSELGLMTIQNINQAVETLSGGQRQGVAVARAAAFGSKVVIMDEPTAALG 183 M +A L++L L ++ V LS G +Q V +A+ +F SKV+IMDEPT AL Sbjct: 116 KTMYAEADKLLAKLNLRF--KSDKLVGDLSIGDQQMVEIAKVLSFESKVIIMDEPTDALT 173 Query: 184 VKESRRVLELILDVRRRGLPIVLISHNMPHVFEVADRIHIHRLGRRLCVINPKDYTMSDA 243 E+ + +I +++ +G IV ISH M +FE+ D + + R G+ + T Sbjct: 174 DTETESLFRVIRELKSQGRGIVYISHRMKEIFEICDDVTVFRDGQFIAEREVASLTEDSL 233 Query: 244 VAFMTGAK 251 + M G K Sbjct: 234 IEMMVGRK 241 Score = 97.1 bits (240), Expect = 7e-25 Identities = 67/204 (32%), Positives = 105/204 (51%), Gaps = 8/204 (3%) Query: 27 FDLYPGEILAVIGDNGAGKSSMIKAISGAVTPDEGEIRLEGKPIQFRSPMEARQAGIETV 86 F L GEIL V G GAG++ ++K + GA+ G + L+G + RSP + GI + Sbjct: 273 FTLRKGEILGVSGLMGAGRTELMKVLYGALPRTSGYVTLDGHEVVTRSPQDGLANGIVYI 332 Query: 87 YQNL---ALSPALSIADNMFLGREIRKPGIMGKWFRSLDRAAMEKQARAKLSELGLMTIQ 143 ++ L +S+ +NM L +R G + D E+QA + L + Sbjct: 333 SEDRKRDGLVLGMSVKENMSL-TALRYFSRAGGSLKHAD----EQQAVSDFIRLFNVKTP 387 Query: 144 NINQAVETLSGGQRQGVAVARAAAFGSKVVIMDEPTAALGVKESRRVLELILDVRRRGLP 203 ++ QA+ LSGG +Q VA+AR KV+I+DEPT + V + + +LI + GL Sbjct: 388 SMEQAIGLLSGGNQQKVAIARGLMTRPKVLILDEPTRGVDVGAKKEIYQLINQFKADGLS 447 Query: 204 IVLISHNMPHVFEVADRIHIHRLG 227 I+L+S MP V ++DRI + G Sbjct: 448 IILVSSEMPEVLGMSDRIIVMHEG 471 Lambda K H 0.321 0.136 0.383 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 299 Number of extensions: 13 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 260 Length of database: 501 Length adjustment: 29 Effective length of query: 231 Effective length of database: 472 Effective search space: 109032 Effective search space used: 109032 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory