Align Phosphogluconate dehydratase; 6-phosphogluconate dehydratase; EC 4.2.1.12 (characterized)
to candidate 18321 b4297 KpLE2 phage-like element; predicted dehydratase (NCBI)
Query= SwissProt::P21909 (607 letters) >FitnessBrowser__Keio:18321 Length = 655 Score = 188 bits (477), Expect = 7e-52 Identities = 156/500 (31%), Positives = 243/500 (48%), Gaps = 38/500 (7%) Query: 80 LSAHEPYYRYPEQMKVFAREVGAT--VQVAGGVPAMCDGVTQGQPGMEESLFSRDVIALA 137 L+ H+ +Y QMK A + A + A V CDG TQG GM +SL R+ ++ Sbjct: 83 LALHQGHYELDIQMKAAAEVIKANHALPYAVYVSDPCDGRTQGTTGMFDSLPYRNDASMV 142 Query: 138 TSVSLSHGMFEGAALLGI--CDKIVPGLLMGALRFGHLPTILVPSGPMTTGIPNKEKIRI 195 L + + A++G+ CDK +P +M ++ T+LVP G ++ ++ Sbjct: 143 MR-RLIRSLPDAKAVIGVASCDKGLPATMMALAAQHNIATVLVPGGATLPAKDGEDNGKV 201 Query: 196 RQLYAQGKIGQKELLDMEAA----CYHAEGTCTFYGTANTNQMVMEVLGLHMPGSAFVTP 251 + + A+ G+ L D A C + G C F GTA T+Q+V E LGL +P SA Sbjct: 202 QTIGARFANGELSLQDARRAGCKACASSGGGCQFLGTAGTSQVVAEGLGLAIPHSALAPS 261 Query: 252 GTPLRQALTRAAVHRVAELGWKGDDYRPLGKIIDEKSIVNAIVGLLATGGSTNHTMHIPA 311 G P+ + + RA+ L KG R +I+ +K+I NA+ A GGSTN +HIPA Sbjct: 262 GEPVWREIARASARAALNLSQKGITTR---EILTDKAIENAMTVHAAFGGSTNLLLHIPA 318 Query: 312 IARAAGV-IVNWNDFHDLSEVVPLIARIYPNGP---RDINEFQNAGGMAYVIKELLSANL 367 IA AG I +D+ +++ VP + + PNGP +N F AGG+ V+ L S L Sbjct: 319 IAHQAGCHIPTVDDWIRINKRVPRLVSVLPNGPVYHPTVNAFM-AGGVPEVMLHLRSLGL 377 Query: 368 LNRDVTTIA----KGGIEEYAKAPALNDAGELVWKPAGEPGDDTILRPVSNPFAKDGGL- 422 L+ DV T+ K ++ + + +L+ D+ I+ P AK GL Sbjct: 378 LHEDVMTVTGSTLKENLDWWEHSERRQRFKQLLLDQEQINADEVIMSPQQ---AKARGLT 434 Query: 423 ---RLLEGNLG--RAMYKASAVDPK------FWTIEAPVRVFSDQDDVQKAFKAGELNKD 471 GN+ ++ K++A+DP + + +V+ + K ++ Sbjct: 435 STITFPVGNIAPEGSVIKSTAIDPSMIDEQGIYYHKGVAKVYLSEKSAIYDIKHDKIKAG 494 Query: 472 VIVVVRFQGPRANGMPELHKLTPALGVLQDNGYKVALVTDGRMSGATGKVPVALHVSPEA 531 I+V+ GP GM E +++T AL L G V+L+TD R SG + + HV PEA Sbjct: 495 DILVIIGVGPSGTGMEETYQVTSALKHL-SYGKHVSLITDARFSGVSTGACIG-HVGPEA 552 Query: 532 LGGGAIGKLRDGDIVRISVE 551 L GG IGKLR GD++ I ++ Sbjct: 553 LAGGPIGKLRTGDLIEIKID 572 Lambda K H 0.318 0.136 0.403 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 981 Number of extensions: 56 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 607 Length of database: 655 Length adjustment: 38 Effective length of query: 569 Effective length of database: 617 Effective search space: 351073 Effective search space used: 351073 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory