Align phosphogluconate dehydratase (EC 4.2.1.12) (characterized)
to candidate 1937120 b3771 dihydroxy-acid dehydratase (NCBI)
Query= BRENDA::Q1PAG1 (608 letters) >FitnessBrowser__Keio:1937120 Length = 616 Score = 221 bits (562), Expect = 9e-62 Identities = 170/545 (31%), Positives = 265/545 (48%), Gaps = 42/545 (7%) Query: 68 VAIVSSYNDMLSAHQPYEHFPEQIKKALREMGSVGQFAGGTPAMCDGVTQGEAGMELSLP 127 +A+V+S+ + H + + + + G V + T A+ DG+ G GM SLP Sbjct: 37 IAVVNSFTQFVPGHVHLRDLGKLVAEQIEAAGGVAK-EFNTIAVDDGIAMGHGGMLYSLP 95 Query: 128 SREVIALSTAVALSHNMFDAALMLGICDKIVPGLMMGALRFGHLPTIFVPGGPMPSG--- 184 SRE+IA S ++ + DA + + CDKI PG++M +LR ++P IFV GGPM +G Sbjct: 96 SRELIADSVEYMVNAHCADAMVCISNCDKITPGMLMASLRL-NIPVIFVSGGPMEAGKTK 154 Query: 185 ----ISNKEKADVRQRYAEGKATREELLESEMKSYHSPGTCTFYGTANTNQLLMEVMGLH 240 I + D + A+ K + + + E + + G+C+ TAN+ L E +GL Sbjct: 155 LSDQIIKLDLVDAMIQGADPKVSDSQSDQVERSACPTCGSCSGMFTANSMNCLTEALGLS 214 Query: 241 LPGASFVNPYTPLRDALTHEAAQQVTRLTK----QSGNFTPIGEIVDERSLVNSIVALHA 296 PG + R L A +++ LTK Q+ I + + N++ A Sbjct: 215 QPGNGSLLATHADRKQLFLNAGKRIVELTKRYYEQNDESALPRNIASKAAFENAMTLDIA 274 Query: 297 TGGSTNHTLHMPAIAQAAGIQLTWQDMADLSEVVPTLSHVYPN-GKADINHFQAAGGMAF 355 GGSTN LH+ A AQ A I T D+ LS VP L V P+ K + AGG+ Sbjct: 275 MGGSTNTVLHLLAAAQEAEIDFTMSDIDKLSRKVPQLCKVAPSTQKYHMEDVHRAGGVIG 334 Query: 356 LIRELLEAGLLHEDVNTVAGRGLSRYTQEPFL-----DNGKLVWRDGPI----------- 399 ++ EL AGLL+ DV V G L + ++ + D K ++R GP Sbjct: 335 ILGELDRAGLLNRDVKNVLGLTLPQTLEQYDVMLTQDDAVKNMFRAGPAGIRTTQAFSQD 394 Query: 400 ---ESLDEN----ILRPVARAFSPEGGLRVMEGNLGRGVMKVSAVALQHQIVE--APAVV 450 ++LD++ +R + A+S +GGL V+ GN V + I++ PA V Sbjct: 395 CRWDTLDDDRANGCIRSLEHAYSKDGGLAVLYGNFAENGCIVKTAGVDDSILKFTGPAKV 454 Query: 451 FQDQQDLADAFKAGELEKDFVAVMRFQGPRSN-GMPELHKMTPFLGVLQDRGFKVALVTD 509 ++ Q D +A G++ V V+R++GP+ GM E+ T FL + G AL+TD Sbjct: 455 YESQDDAVEAILGGKVVAGDVVVIRYEGPKGGPGMQEMLYPTSFLKSM-GLGKACALITD 513 Query: 510 GRMSGASGKIPAAIHVSPEAQVGGALARVRDGDIIRVDGVKGTLELKVDADEFAAREPAK 569 GR SG + + HVSPEA GG++ + DGD+I +D ++L+V E AAR A+ Sbjct: 514 GRFSGGTSGLSIG-HVSPEAASGGSIGLIEDGDLIAIDIPNRGIQLQVSDAELAARREAQ 572 Query: 570 GLLGN 574 G+ Sbjct: 573 DARGD 577 Lambda K H 0.318 0.134 0.386 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 871 Number of extensions: 35 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 608 Length of database: 616 Length adjustment: 37 Effective length of query: 571 Effective length of database: 579 Effective search space: 330609 Effective search space used: 330609 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory