Align Fructose import ATP-binding protein FruK; EC 7.5.2.- (characterized)
to candidate 17809 b3749 fused D-ribose transporter subunits of ABC superfamily: ATP-binding components (NCBI)
Query= SwissProt::Q8G847 (513 letters) >FitnessBrowser__Keio:17809 Length = 501 Score = 342 bits (878), Expect = 1e-98 Identities = 192/502 (38%), Positives = 295/502 (58%), Gaps = 11/502 (2%) Query: 7 IVVMKGITIEFPGVKALDGVDLTLYPGEVHALMGENGAGKSTMIKALTGVYKINAGSIMV 66 ++ +KGI FPGVKAL G L +YPG V AL+GENGAGKSTM+K LTG+Y +AG+++ Sbjct: 4 LLQLKGIDKAFPGVKALSGAALNVYPGRVMALVGENGAGKSTMMKVLTGIYTRDAGTLLW 63 Query: 67 DGKPQQFNGTLDAQNAGIATVYQEVNLCTNLSVGENVMLGHEKRGPFG-IDWKKTHEAAK 125 GK F G +Q AGI ++QE+NL L++ EN+ LG E FG IDWK + A Sbjct: 64 LGKETTFTGPKSSQEAGIGIIHQELNLIPQLTIAENIFLGREFVNRFGKIDWKTMYAEAD 123 Query: 126 KYLAQMGLESIDPHTPLSSISIAMQQLVAIARAMVINAKVLILDEPTSSLDANEVRDLFA 185 K LA++ L + +SI QQ+V IA+ + +KV+I+DEPT +L E LF Sbjct: 124 KLLAKLNLR-FKSDKLVGDLSIGDQQMVEIAKVLSFESKVIIMDEPTDALTDTETESLFR 182 Query: 186 IMRKVRDSGVAILFVSHFLDQIYEITDRLTILRNGQFIKEVMTKDTPRDELIGMMIGKSA 245 ++R+++ G I+++SH + +I+EI D +T+ R+GQFI E D LI MM+G+ Sbjct: 183 VIRELKSQGRGIVYISHRMKEIFEICDDVTVFRDGQFIAEREVASLTEDSLIEMMVGRKL 242 Query: 246 AELSQIGAKKARREITPGEKPIVDVKGLGKKGTINPVDVDIYKGEVVGFAGLLGSGRTEL 305 + + + PG+ + V L G +N V + KGE++G +GL+G+GRTEL Sbjct: 243 ED------QYPHLDKAPGDIRL-KVDNLCGPG-VNDVSFTLRKGEILGVSGLMGAGRTEL 294 Query: 306 GRLLYGADKPDSGTYTLNGKKVNISDPYTALKNKIAYSTENRRDEGIIGDLTVRQNI-LI 364 ++LYGA SG TL+G +V P L N I Y +E+R+ +G++ ++V++N+ L Sbjct: 295 MKVLYGALPRTSGYVTLDGHEVVTRSPQDGLANGIVYISEDRKRDGLVLGMSVKENMSLT 354 Query: 365 ALQATRGMFKPIPKKEADAIVDKYMKELNVRPADPDRPVKNLSGGNQQKVLIGRWLATHP 424 AL+ + + V +++ NV+ ++ + LSGGNQQKV I R L T P Sbjct: 355 ALRYFSRAGGSLKHADEQQAVSDFIRLFNVKTPSMEQAIGLLSGGNQQKVAIARGLMTRP 414 Query: 425 ELLILDEPTRGIDIGAKAEIQQVVLDLASQGMGVVFISSELEEVVRLSDDIEVLKDRHKI 484 ++LILDEPTRG+D+GAK EI Q++ + G+ ++ +SSE+ EV+ +SD I V+ + H Sbjct: 415 KVLILDEPTRGVDVGAKKEIYQLINQFKADGLSIILVSSEMPEVLGMSDRIIVMHEGHLS 474 Query: 485 AEIENDDTVSQATIVETIANTN 506 E + + + + N Sbjct: 475 GEFTREQATQEVLMAAAVGKLN 496 Lambda K H 0.316 0.135 0.376 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 629 Number of extensions: 34 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 513 Length of database: 501 Length adjustment: 34 Effective length of query: 479 Effective length of database: 467 Effective search space: 223693 Effective search space used: 223693 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory