Align PTS system glucose-specific EIICB component; EIICB-Glc; EII-Glc; EC 2.7.1.199 (characterized)
to candidate 15742 b1621 fused maltose and glucose-specific PTS enzymes: IIB component -! IIC component (NCBI)
Query= SwissProt::P37439 (477 letters) >FitnessBrowser__Keio:15742 Length = 530 Score = 277 bits (708), Expect = 7e-79 Identities = 182/510 (35%), Positives = 269/510 (52%), Gaps = 53/510 (10%) Query: 10 QKVGKSLMLPVSVLPIAGILLGVGSANFSW-----LPAVVSHV-------MAEAGGSVFA 57 Q++GK+ MLPV++L GI+LG+GS+ S +P + + V M++ G F+ Sbjct: 16 QQLGKTFMLPVALLSFCGIMLGIGSSLSSHDVITLIPVLGNPVLQAIFTWMSKIGSFAFS 75 Query: 58 NMPLIFAIGVALGFTN-NDGVSALAAVVAYGIMVKTM-----------AVVAPLVLHLPA 105 +P++F I + LG N GV+A A + Y +M + A ++ Sbjct: 76 FLPVMFCIAIPLGLARENKGVAAFAGFIGYAVMNLAVNFWLTNKGILPTTDAAVLKANNI 135 Query: 106 EEIAAKHLADTGVLGGIISGAIAAYMFNRFYRIKLPEYLGFFAGKRFVPIISGLAAIFTG 165 + I DTG+LG +I+G I + RF+ I+LP+ L FF G RFVPIIS L G Sbjct: 136 QSILGIQSIDTGILGAVIAGIIVWMLHERFHNIRLPDALAFFGGTRFVPIISSLVMGLVG 195 Query: 166 VVLSFVWPPIGTAIQAFSQWAAYQNPVVAFG--IYGFIERCLVPFGLHHIWNVPFQM-QI 222 +V+ VWP I N FG ++G ER L+PFGLHHI + Sbjct: 196 LVIPLVWPIFAMGISGLGHMI---NSAGDFGPMLFGTGERLLLPFGLHHILVALIRFTDA 252 Query: 223 GEYTNAAGQVFHGDIPRYMAG-----------DPTAGMLSGGFLFKMYGLPAAAIAIWHS 271 G GQ G + + A T + G + GLP AA+A++H Sbjct: 253 GGTQEVCGQTVSGALTIFQAQLSCPTTHGFSESATRFLSQGKMPAFLGGLPGAALAMYHC 312 Query: 272 AKPENRAKVGGIMISAALTSFLTGITEPIEFSFMFVAPILYIIHAILAGLAFPICILLGM 331 A+PENR K+ G++IS + + G TEP+EF F+FVAP+LY+IHA+L GL F + +LG+ Sbjct: 313 ARPENRHKIKGLLISGLIACVVGGTTEPLEFLFLFVAPVLYVIHALLTGLGFTVMSVLGV 372 Query: 332 RDGTSFSHGLIDFIV---LSGNSSKLWLFPIVGAGYAIVYYTVFRVLIKALDLKTPGRE- 387 G + +IDF+V L G S+K ++ P+V A + +VYY +FR I +LKTPGR+ Sbjct: 373 TIGNT-DGNIIDFVVFGILHGLSTKWYMVPVVAAIWFVVYYVIFRFAITRFNLKTPGRDS 431 Query: 388 ---DTTDDAKAGATSEM---APALVAAFGGKENITNLDACITRLRVSVADVAKVDQAGLK 441 + + A AGA + PA++ A GG +NI +LD CITRLR+SV D++ V+ LK Sbjct: 432 EVASSIEKAVAGAPGKSGYNVPAILEALGGADNIVSLDNCITRLRLSVKDMSLVNVQALK 491 Query: 442 KLGAAGVVVAGS-GVQAIFGTKSDNLKTEM 470 A GVV +Q + G + ++K EM Sbjct: 492 DNRAIGVVQLNQHNLQVVIGPQVQSVKDEM 521 Lambda K H 0.325 0.140 0.421 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 803 Number of extensions: 52 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 477 Length of database: 530 Length adjustment: 34 Effective length of query: 443 Effective length of database: 496 Effective search space: 219728 Effective search space used: 219728 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory