Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate 15646 b1525 putative aldehyde dehydrogenase (VIMSS)
Query= BRENDA::A6T8Z5 (462 letters) >FitnessBrowser__Keio:15646 Length = 462 Score = 722 bits (1864), Expect = 0.0 Identities = 352/456 (77%), Positives = 394/456 (86%) Query: 6 ATHAVSVNPTTGEVVSSLPWASEREVDAAITLAAAGYRQWRQTPLADRADALRRIGAALR 65 ATHA+S+NP TGE +S LPWA +++ A+ LAAAG+R WR+T + RA+ LR IG ALR Sbjct: 6 ATHAISINPATGEQLSVLPWAGADDIENALQLAAAGFRDWRETNIDYRAEKLRDIGKALR 65 Query: 66 ARGEEVAQMITLEMGKPIAQARGEVAKSANLCDWYAEHGPAMLATEATLVENNQAVIEYR 125 AR EE+AQMIT EMGKPI QAR EVAKSANLCDWYAEHGPAML E TLVEN QAVIEYR Sbjct: 66 ARSEEMAQMITREMGKPINQARAEVAKSANLCDWYAEHGPAMLKAEPTLVENQQAVIEYR 125 Query: 126 PLGAILAVMPWNFPVWQVMRGAVPILLAGNSYLLKHAPNVMGSARLLGEIFAAAGLPDGV 185 PLG ILA+MPWNFP+WQVMRGAVPI+LAGN YLLKHAPNVMG A+L+ ++F AG+P GV Sbjct: 126 PLGTILAIMPWNFPLWQVMRGAVPIILAGNGYLLKHAPNVMGCAQLIAQVFKDAGIPQGV 185 Query: 186 FGWVNATNDGVSQIINDDRIAAVTVTGSVRAGKAIGAQAGAALKKCVLELGGSDPFIVLN 245 +GW+NA NDGVSQ+I D RIAAVTVTGSVRAG AIGAQAGAALKKCVLELGGSDPFIVLN Sbjct: 186 YGWLNADNDGVSQMIKDSRIAAVTVTGSVRAGAAIGAQAGAALKKCVLELGGSDPFIVLN 245 Query: 246 DADLDEAVKAAVTGRYQNSGQVCAASKRFILEAGIAEAFTRKFVDAVAALKMGDPRDEQN 305 DADL+ AVKAAV GRYQN+GQVCAA+KRFI+E GIA AFT +FV A AALKMGDPRDE+N Sbjct: 246 DADLELAVKAAVAGRYQNTGQVCAAAKRFIIEEGIASAFTERFVAAAAALKMGDPRDEEN 305 Query: 306 YVGPMARFDLRDELHQQVTATLDEGATLLLGAEKIEGAGNYYAPTVLGNVTAGMTGFRQE 365 +GPMARFDLRDELH QV TL +GA LLLG EK+ GAGNYY PTVL NVT MT FR+E Sbjct: 306 ALGPMARFDLRDELHHQVEKTLAQGARLLLGGEKMAGAGNYYPPTVLANVTPEMTAFREE 365 Query: 366 LFGPVATLTTARDADHALALANDSEFGLSATVYTTDEAQAQRFARELECGGVFLNGYCAS 425 +FGPVA +T A+DA+HAL LANDSEFGLSAT++TTDE QA++ A LECGGVF+NGYCAS Sbjct: 366 MFGPVAAITIAKDAEHALELANDSEFGLSATIFTTDETQARQMAARLECGGVFINGYCAS 425 Query: 426 DARVAFGGVKKSGFGRELSHFGLHEFCNAQTVWKDR 461 DARVAFGGVKKSGFGRELSHFGLHEFCN QTVWKDR Sbjct: 426 DARVAFGGVKKSGFGRELSHFGLHEFCNIQTVWKDR 461 Lambda K H 0.319 0.133 0.392 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 642 Number of extensions: 10 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 462 Length of database: 462 Length adjustment: 33 Effective length of query: 429 Effective length of database: 429 Effective search space: 184041 Effective search space used: 184041 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory