Align acetaldehyde dehydrogenase (acetylating) EutE (EC 1.2.1.10) (characterized)
to candidate 16554 b2455 predicted aldehyde dehydrogenase, ethanolamine utilization protein (NCBI)
Query= ecocyc::G7285-MONOMER (467 letters) >FitnessBrowser__Keio:16554 Length = 467 Score = 898 bits (2321), Expect = 0.0 Identities = 467/467 (100%), Positives = 467/467 (100%) Query: 1 MNQQDIEQVVKAVLLKMQSSDTPSAAVHEMGVFASLDDAVAAAKVAQQGLKSVAMRQLAI 60 MNQQDIEQVVKAVLLKMQSSDTPSAAVHEMGVFASLDDAVAAAKVAQQGLKSVAMRQLAI Sbjct: 1 MNQQDIEQVVKAVLLKMQSSDTPSAAVHEMGVFASLDDAVAAAKVAQQGLKSVAMRQLAI 60 Query: 61 AAIREAGEKHARDLAELAVSETGMGRVEDKFAKNVAQARGTPGVECLSPQVLTGDNGLTL 120 AAIREAGEKHARDLAELAVSETGMGRVEDKFAKNVAQARGTPGVECLSPQVLTGDNGLTL Sbjct: 61 AAIREAGEKHARDLAELAVSETGMGRVEDKFAKNVAQARGTPGVECLSPQVLTGDNGLTL 120 Query: 121 IENAPWGVVASVTPSTNPAATVINNAISLIAAGNSVIFAPHPAAKKVSQRAITLLNQAIV 180 IENAPWGVVASVTPSTNPAATVINNAISLIAAGNSVIFAPHPAAKKVSQRAITLLNQAIV Sbjct: 121 IENAPWGVVASVTPSTNPAATVINNAISLIAAGNSVIFAPHPAAKKVSQRAITLLNQAIV 180 Query: 181 AAGGPENLLVTVANPDIETAQRLFKFPGIGLLVVTGGEAVVEAARKHTNKRLIAAGAGNP 240 AAGGPENLLVTVANPDIETAQRLFKFPGIGLLVVTGGEAVVEAARKHTNKRLIAAGAGNP Sbjct: 181 AAGGPENLLVTVANPDIETAQRLFKFPGIGLLVVTGGEAVVEAARKHTNKRLIAAGAGNP 240 Query: 241 PVVVDETADLARAAQSIVKGASFDNNIICADEKVLIVVDSVADELMRLMEGQHAVKLTAE 300 PVVVDETADLARAAQSIVKGASFDNNIICADEKVLIVVDSVADELMRLMEGQHAVKLTAE Sbjct: 241 PVVVDETADLARAAQSIVKGASFDNNIICADEKVLIVVDSVADELMRLMEGQHAVKLTAE 300 Query: 301 QAQQLQPVLLKNIDERGKGTVSRDWVGRDAGKIAAAIGLKVPQETRLLFVETTAEHPFAV 360 QAQQLQPVLLKNIDERGKGTVSRDWVGRDAGKIAAAIGLKVPQETRLLFVETTAEHPFAV Sbjct: 301 QAQQLQPVLLKNIDERGKGTVSRDWVGRDAGKIAAAIGLKVPQETRLLFVETTAEHPFAV 360 Query: 361 TELMMPVLPVVRVANVADAIALAVKLEGGCHHTAAMHSRNIENMNQMANAIDTSIFVKNG 420 TELMMPVLPVVRVANVADAIALAVKLEGGCHHTAAMHSRNIENMNQMANAIDTSIFVKNG Sbjct: 361 TELMMPVLPVVRVANVADAIALAVKLEGGCHHTAAMHSRNIENMNQMANAIDTSIFVKNG 420 Query: 421 PCIAGLGLGGEGWTTMTITTPTGEGVTSARTFVRLRRCVLVDAFRIV 467 PCIAGLGLGGEGWTTMTITTPTGEGVTSARTFVRLRRCVLVDAFRIV Sbjct: 421 PCIAGLGLGGEGWTTMTITTPTGEGVTSARTFVRLRRCVLVDAFRIV 467 Lambda K H 0.317 0.131 0.366 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 773 Number of extensions: 15 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 467 Length of database: 467 Length adjustment: 33 Effective length of query: 434 Effective length of database: 434 Effective search space: 188356 Effective search space used: 188356 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory