Align 2-aminomuconic semialdehyde dehydrogenase; Aldehyde dehydrogenase 12; Aldehyde dehydrogenase family 8 member A1; EC 1.2.1.32 (characterized)
to candidate 15507 b1385 phenylacetaldehyde dehydrogenase (VIMSS)
Query= SwissProt::Q9H2A2 (487 letters) >FitnessBrowser__Keio:15507 Length = 499 Score = 321 bits (822), Expect = 4e-92 Identities = 177/484 (36%), Positives = 283/484 (58%), Gaps = 16/484 (3%) Query: 13 FIDGKFLPCSSY--IDSYDPSTGEVYCRVPNSGKDEIEAAVKAAREAFPS--WSSRSPQE 68 +IDG+ P S + +DP+TG+ ++ + +++ AV +A AF S W+ R P E Sbjct: 23 YIDGRPGPAQSEKRLAIFDPATGQEIASTADANEADVDNAVMSAWRAFVSRRWAGRLPAE 82 Query: 69 RSRVLNQVADLLEQSLEEFAQAESKDQGKTLALARTMDIPRSVQNFRFFASSSLHHTSEC 128 R R+L + ADL+EQ EE AQ E+ +QGK++A++R ++ ++ R+ A + + Sbjct: 83 RERILLRFADLVEQHSEELAQLETLEQGKSIAISRAFEVGCTLNWMRYTAGLTTKIAGKT 142 Query: 129 TQMD---HLGCMH--YTVRAPVGVAGLISPWNLPLYLLTWKIAPAMAAGNTVIAKPSELT 183 + G + +T + PVGV I PWN PL + WK+ PA+AAG +++ KPSE T Sbjct: 143 LDLSIPLPQGARYQAWTRKEPVGVVAGIVPWNFPLMIGMWKVMPALAAGCSIVIKPSETT 202 Query: 184 SVTAWMLCKLLDKAGVPPGVVNIVFGTGPRVGEALVSHPEVPLISFTGSQPTAERITQLS 243 +T + +L +AG+P GV N+V G+G G AL SHP V ISFTGS T + I + + Sbjct: 203 PLTMLRVAELASEAGIPDGVFNVVTGSGAVCGAALTSHPHVAKISFTGSTATGKGIARTA 262 Query: 244 APHCKKLSLELGGKNPAIIFEDANLDECIPATVRSSFANQGEICLCTSRIFVQKSIYSEF 303 A H +++LELGGKNPAI+ +DA+ I + SF NQG++C +SRI+++ ++ Sbjct: 263 ADHLTRVTLELGGKNPAIVLKDADPQWVIEGLMTGSFLNQGQVCAASSRIYIEAPLFDTL 322 Query: 304 LKRFVEATRKWKVGIPSDPLVSIGALISKAHLEKVRSYVKRALAEGAQIWCGEGVDKLSL 363 + F +A + +VG P+ I L+S+AH +KV S++ A A+ A++ G + Sbjct: 323 VSGFEQAVKSLQVGPGMSPVAQINPLVSRAHCDKVCSFLDDAQAQQAELIRGS-----NG 377 Query: 364 PARNQAGYFMLPTVITDIKDESCCMTEEIFGPVTCVVPFDSEEEVIERANNVKYGLAATV 423 PA GY++ PT++ + + EE+FGPV +V EE ++ AN+ +YGL A+V Sbjct: 378 PAGE--GYYVAPTLVVNPDAKLRLTREEVFGPVVNLVRVADGEEALQLANDTEYGLTASV 435 Query: 424 WSSNVGRVHRVAKKLQSGLVWTNCWLIRELNLPFGGMKSSGIGREGAKDSYDFFTEIKTI 483 W+ N+ + + +LQ+G VW N + + NLPFGGMK SG GR+ D D + E K++ Sbjct: 436 WTQNLSQALEYSDRLQAGTVWVNSHTLIDANLPFGGMKQSGTGRDFGPDWLDGWCETKSV 495 Query: 484 TVKH 487 V++ Sbjct: 496 CVRY 499 Lambda K H 0.319 0.133 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 606 Number of extensions: 24 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 487 Length of database: 499 Length adjustment: 34 Effective length of query: 453 Effective length of database: 465 Effective search space: 210645 Effective search space used: 210645 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory